Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioconjug Chem ; 34(7): 1258-1270, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37243625

RESUMEN

Colloidal semiconductor quantum dots (QDs) are of widespread interest as fluorescent labels for bioanalysis and imaging applications. Single-particle measurements have proven to be a very powerful tool for better understanding the fundamental properties and behaviors of QDs and their bioconjugates; however, a recurring challenge is the immobilization of QDs in a solution-like environment that minimizes interactions with a bulk surface. Immobilization strategies for QD-peptide conjugates are particularly underdeveloped within this context. Here, we present a novel strategy for the selective immobilization of single QD-peptide conjugates using a combination of tetrameric antibody complexes (TACs) and affinity tag peptides. A glass substrate is modified with an adsorbed layer of concanavalin A (ConA) that binds a subsequent layer of dextran that minimizes nonspecific binding. A TAC with anti-dextran and anti-affinity tag antibodies binds to the dextran-coated glass surface and to the affinity tag sequence of QD-peptide conjugates. The result is spontaneous and sequence-selective immobilization of single QDs without any chemical activation or cross-linking. Controlled immobilization of multiple colors of QDs is possible using multiple affinity tag sequences. Experiments confirmed that this approach positions the QD away from the bulk surface. The method supports real-time imaging of binding and dissociation, measurements of Förster resonance energy transfer (FRET), tracking of dye photobleaching, and detection of proteolytic activity. We anticipate that this immobilization strategy will be useful for studies of QD-associated photophysics, biomolecular interactions and processes, and digital assays.


Asunto(s)
Puntos Cuánticos , Péptidos/química , Colorantes , Transferencia Resonante de Energía de Fluorescencia/métodos
2.
Anal Chem ; 95(2): 551-559, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36595310

RESUMEN

Combinations of luminescent nanoparticles (LNPs) and Förster resonance energy transfer (FRET) offer properties and features that are advantageous for sensing of biomolecular targets and activity. Despite a multitude of designs for LNP-FRET sensors, intracellular sensing applications are underdeveloped. We introduce readers to this field, summarize essential concepts, meta-analyze the literature, and offer a perspective on the bottleneck in LNP-FRET sensor development.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Nanopartículas , Luminiscencia , Proteínas Luminiscentes
3.
Chem Rev ; 121(15): 9243-9358, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34282906

RESUMEN

Research related to the development and application of luminescent nanoparticles (LNPs) for chemical and biological analysis and imaging is flourishing. Novel materials and new applications continue to be reported after two decades of research. This review provides a comprehensive and heuristic overview of this field. It is targeted to both newcomers and experts who are interested in a critical assessment of LNP materials, their properties, strengths and weaknesses, and prospective applications. Numerous LNP materials are cataloged by fundamental descriptions of their chemical identities and physical morphology, quantitative photoluminescence (PL) properties, PL mechanisms, and surface chemistry. These materials include various semiconductor quantum dots, carbon nanotubes, graphene derivatives, carbon dots, nanodiamonds, luminescent metal nanoclusters, lanthanide-doped upconversion nanoparticles and downshifting nanoparticles, triplet-triplet annihilation nanoparticles, persistent-luminescence nanoparticles, conjugated polymer nanoparticles and semiconducting polymer dots, multi-nanoparticle assemblies, and doped and labeled nanoparticles, including but not limited to those based on polymers and silica. As an exercise in the critical assessment of LNP properties, these materials are ranked by several application-related functional criteria. Additional sections highlight recent examples of advances in chemical and biological analysis, point-of-care diagnostics, and cellular, tissue, and in vivo imaging and theranostics. These examples are drawn from the recent literature and organized by both LNP material and the particular properties that are leveraged to an advantage. Finally, a perspective on what comes next for the field is offered.


Asunto(s)
Luminiscencia , Nanopartículas/análisis , Nanopartículas/química , Elementos de la Serie de los Lantanoides , Nanotubos de Carbono/análisis , Nanotubos de Carbono/química , Polímeros , Puntos Cuánticos/análisis , Puntos Cuánticos/química
4.
Methods Mol Biol ; 2135: 143-168, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32246333

RESUMEN

Brightly luminescent semiconductor quantum dots (QDs) are ideal materials for cellular imaging and analysis because of their advantageous optical properties and surface area that supports multivalent conjugation of biomolecules. An important design consideration for effective use of these materials is a hydrophilic, biocompatible surface chemistry that provides colloidal stability and minimizes nonspecific interactions with biological molecules and systems. Dextran coatings are able to satisfy these criteria. Despite frequent use of dextran coatings with other nanomaterials (e.g., iron oxide nanoparticles), there has been little development and application of dextran coatings for QDs. In this chapter, we describe methods for the synthesis and characterization of a dextran ligand for QDs, including preparation of an immunoconjugate via tetrameric antibody complexes (TAC). The utility of these immunoconjugates is demonstrated through immunofluorescent labeling and imaging of overexpressed human epidermal growth factor receptor 2 (HER2) on the surface of SK-BR3 breast cancer cells.


Asunto(s)
Dextranos/química , Inmunoconjugados/química , Puntos Cuánticos/química , Compuestos de Cadmio/química , Humanos , Ligandos , Luminiscencia , Nanopartículas/química , Compuestos de Selenio/química
5.
Bioconjug Chem ; 31(3): 861-874, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32083851

RESUMEN

The prerequisites for maximizing the advantageous optical properties of colloidal semiconductor quantum dots (QDs) in biological applications are effective surface functionalization and bioconjugation strategies. Functionalization with dextran has been highly successful with some nanoparticle materials, but has had very limited application with QDs. Here, we report the preparation, characterization, and proof-of-concept applications of dextran-functionalized QDs. Multiple approaches to dextran ligands were evaluated, including performance with respect to colloidal stability across a range of pH, nonspecific binding with proteins and cells, and microinjection into cells and viability assays. Multiple bioconjugation strategies were demonstrated and applied, including covalent coupling to develop a simple pH sensor, binding of polyhistidine-tagged peptides to the QD for energy transfer-based proteolytic activity assays, and binding with tetrameric antibody complexes (TACs) to enable a sandwich immunoassay and cell immunolabeling and imaging. Our results show that dextran ligands are highly promising for the functionalization of QDs, and that the design of the ligands is tailorable to help optimally meet the requirements of applications.


Asunto(s)
Dextranos/química , Imagen Molecular/métodos , Puntos Cuánticos/química , Semiconductores , Células A549 , Electroforesis , Humanos , Ligandos , Fenómenos Ópticos , Puntos Cuánticos/metabolismo , Coloración y Etiquetado , Propiedades de Superficie
6.
ACS Appl Bio Mater ; 3(1): 432-440, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35019459

RESUMEN

Brightly fluorescent semiconducting polymer dots (Pdots) are emerging as very useful probes for bioanalysis and imaging. Unfortunately, Pdot materials often suffer from limitations such as poor colloidal and physical stability, nonspecific adsorption, and relatively few reported surface chemistries and bioconjugate chemistries. To help address these limitations, we have developed dextran-functionalized Pdots (Dex-Pdots). This functionalization improves particle stability over a range of pH and at high ionic strength, hinders surface-induced unfolding, and enables the preparation of immunoconjugates via tetrameric antibody complexes (TAC). The utility of TAC-conjugated Dex-Pdots is demonstrated through a proof-of-concept fluorescence-linked immunosorbent assay (FLISA) for human erythropoietin (EPO), and through immunolabeling of human epidermal growth factor receptor 2 (HER2)-positive SK-BR3 breast cancer cells. The conjugates exhibited less nonspecific binding and greater specific binding than Pdots without dextran functionalization. Overall, dextran functionalization is a highly promising surface chemistry for biological applications of Pdots.

7.
Methods Appl Fluoresc ; 7(4): 042001, 2019 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-31359875

RESUMEN

Concentric Förster resonance energy transfer (cFRET) is an emerging concept for single-vector multiplexed bioanalysis and imaging. It features a network of competitive and sequential energy transfer pathways, which, to date, has been assembled with a central semiconductor quantum dot (QD) and biomolecular linkers to multiple copies of multiple types of concentrically-arranged fluorescent dyes. In this review, we provide a first-hand account of the concept and development of cFRET, starting from its place in the broader context of FRET probes and assemblies. Topics of discussion include materials for cFRET, with a focus on the enabling properties of QDs and the ideal properties of nominal acceptor dyes; characterization and analysis of cFRET configurations via photoluminescence intensity, emission ratio, lifetime, and photobleaching measurements; semi-empirical modeling to determine the rates and efficiencies of competitive and sequential FRET pathways from overall quenching efficiencies; and archetypical examples of cFRET configurations and their application in bioanalysis and imaging. Most of the latter examples demonstrate multiplexed detection of protease activity or nucleic acid targets. Examples of atypical and cFRET-like configurations are also discussed, including those that utilize time-gated FRET relays and charge-transfer quenching. We conclude with a perspective on challenges and directions for future research with cFRET. Although still emerging as a method, many exciting opportunities in bioanalysis, imaging, and beyond are envisioned for cFRET.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Animales , Técnicas Biosensibles , Humanos , Imagen Molecular
8.
Langmuir ; 35(22): 7067-7091, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-30415548

RESUMEN

Enzymes are important biomarkers for molecular diagnostics and targets for the action of drugs. In turn, inorganic nanoparticles (NPs) are of interest as materials for biological assays, biosensors, cellular and in vivo imaging probes, and vectors for drug delivery and theranostics. So how does an enzyme interact with a NP, and what are the outcomes of multivalent conjugation of its substrate to a NP? This invited feature article addresses the current state of the art in answering this question. Using gold nanoparticles (Au NPs) and semiconductor quantum dots (QDs) as illustrative materials, we discuss aspects of enzyme structure-function and the properties of NP interfaces and surface chemistry that determine enzyme-NP interactions. These aspects render the substrate-on-NP configurations far more complex and heterogeneous than the conventional turnover of discrete substrate molecules in bulk solution. Special attention is also given to the limitations of a standard kinetic analysis of the enzymatic turnover of these configurations, the need for a well-defined model of turnover, and whether a "hopping" model can account for behaviors such as the apparent acceleration of enzyme activity. A detailed and predictive understanding of how enzymes turn over multivalent NP-substrate conjugates will require a convergence of many concepts and tools from biochemistry, materials, and interface science. In turn, this understanding will help to enable rational, optimized, and value-added designs of NP bioconjugates for biomedical and clinical applications.


Asunto(s)
Enzimas/metabolismo , Compuestos Inorgánicos/química , Nanopartículas/química , Enzimas/química , Propiedades de Superficie
9.
ACS Sens ; 2(8): 1205-1214, 2017 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-28787151

RESUMEN

Molecular logic devices (MLDs) constructed from DNA are promising for applications in bioanalysis, computing, and other applications requiring Boolean logic. These MLDs accept oligonucleotide inputs and generate fluorescence output through changes in structure. Although fluorescent dyes are most common in MLD designs, nontraditional luminescent materials with unique optical properties can potentially enhance MLD capabilities. In this context, luminescent lanthanide complexes (LLCs) have been largely overlooked. Here, we demonstrate a set of high-contrast DNA photonic logic gates based on toehold-mediated strand displacement and time-gated FRET. The gates include NAND, NOR, OR, and AND designs that accept two unlabeled target oligonucleotide sequences as inputs. Bright "true" output states utilize time-gated, FRET-sensitized emission from an Alexa Fluor 546 (A546) dye acceptor paired with a luminescent terbium cryptate (Tb) donor. Dark "false" output states are generated through either displacement of the A546, or through competitive and sequential quenching of the Tb or A546 by a dark quencher. Time-gated FRET and the long luminescence lifetime and spectrally narrow emission lines of the Tb donor enable 4-10-fold contrast between Boolean outputs, ≤10% signal variation for a common output, multicolor implementation of two logic gates in parallel, and effective performance in buffer and serum. These metrics exceed those reported for many other logic gate designs with only fluorescent dyes and with other non-LLC materials. Preliminary three-input AND and NAND gates are also demonstrated. The powerful combination of an LLC FRET donor with DNA-based logic gates is anticipated to have many future applications in bioanalysis.

10.
Methods Mol Biol ; 1530: 63-97, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28150196

RESUMEN

Proteolysis has many important roles in physiological regulation. It is involved in numerous cell signaling processes and the pathogenesis of many diseases, including cancers. Methods of visualizing and assaying proteolytic activity are therefore in demand. Förster resonance energy transfer (FRET) probes offer several advantages in this respect. FRET supports end-point or real-time measurements, does not require washing or separation steps, and can be implemented in various assay or imaging formats. In this chapter, we describe methodology for preparing self-assembled concentric FRET (cFRET) probes for multiplexed tracking and imaging of proteolytic activity. The cFRET probe comprises a green-emitting semiconductor quantum dot (QD) conjugated with multiple copies of two different peptide substrates for two target proteases. The peptide substrates are labeled with different fluorescent dyes, Alexa Fluor 555 and Alexa Fluor 647, and FRET occurs between the QD and both dyes, as well as between the two dyes. This design enables a single QD probe to track the activity of two proteases simultaneously. Fundamental cFRET theory is presented, and procedures for using the cFRET probe for quantitative measurement of the activity of two model proteases are given, including calibration, fluorescence plate reader or microscope imaging assays, and data analysis. Sufficient detail is provided for other researchers to adapt this method to their specific requirements and proteolytic systems of interest.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Imagen Molecular , Sondas Moleculares , Puntos Cuánticos , Transferencia Resonante de Energía de Fluorescencia/métodos , Cinética , Mediciones Luminiscentes/métodos , Microscopía/métodos , Péptido Hidrolasas/metabolismo , Péptidos/química , Péptidos/metabolismo , Proteolisis
11.
Anal Chem ; 87(23): 11923-31, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26562366

RESUMEN

Nucleic acid hybridization probes are sought after for numerous assay and imaging applications. These probes are often limited by the properties of fluorescent dyes, prompting the development of new probes where dyes are paired with novel or nontraditional luminescent materials. Luminescent terbium complexes are an example of such a material, and these complexes offer several unique spectroscopic advantages. Here, we demonstrate two nonstem-loop designs for light-up nucleic acid hybridization beacons that utilize time-resolved Förster resonance energy transfer (TR-FRET) between a luminescent Lumi4-Tb cryptate (Tb) donor and a fluorescent reporter dye, where time-resolved emission from the dye provides an analytical signal. Both designs are based on probe oligonucleotides that are labeled at their opposite termini with Tb and a fluorescent reporter dye. In one design, a probe is partially blocked with a quencher dye-labeled oligonucleotide, and target hybridization is signaled through toehold-mediated strand displacement and loss of a competitive FRET pathway. In the other design, the intrinsic folding properties of an unblocked probe are utilized in combination with a temporal mechanism for signaling target hybridization. This temporal mechanism is based on a recently elucidated "sweet spot" for TR-FRET measurements and exploits distance control over FRET efficiencies to shift the Tb lifetime within or outside the time-gated detection window for measurements. Both the blocked and unblocked beacons offer nanomolar (femtomole) detection limits, response times on the order of minutes, multiplexing through the use of different reporter dyes, and detection in complex matrices such as serum and blood. The blocked beacons offer better mismatch selectivity, whereas the unblocked beacons are simpler in design. The temporal mechanism of signaling utilized with the unblocked beacons also plays a significant role with the blocked beacons and represents a new and effective strategy for developing FRET probes for bioassays.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/química , Hibridación de Ácido Nucleico , Sondas de Oligonucleótidos/química , Compuestos Organometálicos/química , Éteres Corona/química , Colorantes Fluorescentes/síntesis química , Luminiscencia , Sondas de Oligonucleótidos/síntesis química , Compuestos Organometálicos/síntesis química , Terbio/química , Factores de Tiempo
12.
Curr Opin Biotechnol ; 34: 30-40, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25481436

RESUMEN

Semiconductor quantum dots (QDs) and semiconducting polymer nanoparticles (Pdots) are brightly emissive materials that offer many advantages for bioanalysis and bioimaging, and are complementary to revolutionary advances in fluorescence technology. Within the context of biological applications, this review compares the evolution and different stages of development of these two types of nanoparticle, and addresses current perceptions about QDs. Although neither material is a wholesale replacement for fluorescent dyes, recent trends have demonstrated that both types of nanoparticle can excel in applications that are often too demanding for fluorescent dyes alone. Examples discussed in this review include single particle tracking and imaging, multicolor imaging and multiplexed detection, biosensing, point-of-care diagnostics, in vivo imaging and drug delivery.


Asunto(s)
Polímeros/química , Puntos Cuánticos , Semiconductores , Animales , Colorantes Fluorescentes/química , Humanos , Nanopartículas/química
13.
Anal Chim Acta ; 750: 182-90, 2012 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-23062439

RESUMEN

A molecular switch was prepared by self-assembly. Neutravidin served as a template that allowed for a biotinylated probe oligonucleotide to be placed adjacent to a biotinylated long-chain linker that was terminated with thiazole orange (TO). Hybridization of probe oligonucleotide with target to form double-stranded DNA resulted in intercalation of the adjacent TO probe. This was a reversible process that could be tracked by fluorescence intensity changes. Formamide was used as a denaturant for double-stranded DNA, and could be used to depress thermal denaturation temperatures. In this work formamide had a dual function, providing for control of hybridization selectivity at room temperature, while concurrently ameliorating non-specific adsorption to improve signal-to-noise when using thiazole orange as a fluorescence signalling agent to determine oligonucleotide hybridization. Room temperature single nucleotide polymorphism (SNP) discrimination for oligonucleotide targets was achieved both in solution and for molecular switches that were immobilized onto optical fibers. In solution, a concentration of 18.5% formamide provided greater than 40-fold signal difference between single-stranded DNA and double-stranded DNA, in contrast to only a 2-fold difference in the absence of formamide. Selectivity for SNP determination in solution was demonstrated using targets of varying lengths including a 141-base PCR amplicon. The improved signal-to-noise achieved by use of formamide is likely due to preferential displacement of dye molecules that are otherwise electrostatically bound to the polyanionic nucleic acid backbone.


Asunto(s)
Colorantes Fluorescentes/química , Hibridación de Ácido Nucleico , Oligonucleótidos/química , Actinas/química , Benzotiazoles/química , Formamidas/química , Polimorfismo de Nucleótido Simple , Quinolinas/química , Temperatura
14.
Anal Bioanal Chem ; 398(4): 1605-14, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20467726

RESUMEN

A novel fluorescent molecular switch for the detection of nucleic acid hybridization has been explored in relation to the development of a structure that would be amenable for operation when immobilized for solid-phase analyses. The structure was prepared by self-assembly, and used Neutravidin as the central multivalent docking molecule, a newly synthesized biotinylated long-chain linker for intercalating dye that was modified with thiazole orange (TO) at one end, and a biotinylated probe oligonucleotide. Self-assembly of the biotinylated components on adjacent Neutravidin binding sites allowed for physical placement of an oligonucleotide probe molecule next to tethered TO. The TO located at the end of the flexible linker chain was available to intercalate, and could report if a duplex structure was formed by a probe-target interaction by means of fluorescence intensity. Subsequently, regeneration of the single-stranded probe was possible without loss of the intercalator to solution. The switch constructs were assembled in solution and subsequently immobilized onto biotin functionalized optical fibers to complete the sensor design. Solution-phase fluorescence lifetime data showed a biexponential behavior for switch constructs, suggesting intercalation as well as a significant secondary binding mode for the immobilized TO. It was found that the secondary binding mechanism for the dye to DNA could be decreased, thus shifting the dye to intercalative binding modes, by adjusting the solution conditions to a pH below the pI of Neutravidin, and by increasing the ionic strength of the buffer. Preliminary work demonstrated that it was possible to achieve up to a fivefold increase in fluorescence intensity on hybridization to the target.


Asunto(s)
Benzotiazoles/química , Técnicas Biosensibles/métodos , Colorantes Fluorescentes/química , Ácidos Nucleicos/química , Quinolinas/química , Benzotiazoles/síntesis química , Técnicas Biosensibles/tendencias , Biotinilación , Colorantes Fluorescentes/síntesis química , Quinolinas/síntesis química
15.
J Fluoresc ; 16(4): 555-67, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16794869

RESUMEN

Fluorescence resonance energy transfer (FRET) was investigated between the intercalating dye thiazole orange (TO), and the dyes Cyanine 3 (Cy3), Cyanine 5 (Cy5), Carboxytetramethyl Rhodamine (TAMRA), Iowa Black FQ (IabFQ), and Iowa Black RQ (IabRQ), which were covalently immobilized at the end of dsDNA oligonucleotides. In addition to determining that TO was an effective energy donor, FRET efficiency data obtained from fluorescence lifetime measurements indicated that TO intercalated near the middle of the 19mer oligonucleotide sequence that was used in this study. Discrepancies in FRET efficiencies obtained from intensity and lifetime measurements led to the investigation of non-fluorescent complex formation between TAMRA and modified TO. The hydrophobicity of TO was modified by the addition of either an alkyl or polyethylene glycol (PEG) side-chain to study effects of dimer and aggregate formation. It was found that at stoichiometric excesses of modified TO, fluorescence quenching of TAMRA was observed, and that this could be correlated to the hydrophobicity of a TO-chain species. The TAMRA:TO-chain association constant for the TO-alkyl system was 0.043+/-0.002 M(-1), while that obtained for the TO-PEG was 0.037+/-0.002 M(-1). From the perspective of method development for the transduction of hybridization events, we present and evaluate a variety of schemes based on energy transfer between TO and an acceptor dye, and discuss the implications of complex formation in such schemes.


Asunto(s)
ADN/química , Transferencia Resonante de Energía de Fluorescencia/métodos , Indicadores y Reactivos/química , Tiazoles/química , Técnicas Biosensibles/métodos , Estructura Molecular , Hibridación de Ácido Nucleico , Transducción de Señal , Espectrometría de Fluorescencia , Tiazoles/síntesis química
16.
Anal Chim Acta ; 568(1-2): 181-9, 2006 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-17761259

RESUMEN

Fluorescence resonance energy transfer (FRET) between the extrinsic dye labels Cyanine 3 (Cy3), Cyanine 5 (Cy5), Carboxytetramethyl Rhodamine (TAMRA), Iowa Black Fluorescence Quencher (IabFQ), and Iowa Black RQ (IabRQ) has been studied. The Förster distances for these FRET-pairs in single- and double-stranded DNA conjugates have been determined. In particular, it should be noted that the quantum yield of the donors Cy3 and TAMRA varies between single- and double-stranded DNA. While this alters the Förster distance for a donor-acceptor pair, this also allows for detection of thermal denaturation events with a single non-intercalating fluorophore. The utility of FRET in the development of nucleic acid biosensor technology is illustrated by using TAMRA and IabRQ as a FRET pair in selectivity experiments. The differential quenching of TAMRA fluorescence by IabRQ in solution has been used to discriminate between 0 and 3 base pair mismatches at 60 degrees C for a 19 base sequence. At room temperature, the quenching of TAMRA fluorescence was not an effective indicator of the degree of base pair mismatch. There appears to be a threshold of duplex stability at room temperature which occurs beyond two base pair mismatches and reverses the observed trend in TAMRA fluorescence prior to that degree of mismatch. When this experimental system is transferred to a glass surface through covalent coupling and organosilane chemistry, the observed trend in TAMRA fluorescence at room temperature is similar to that obtained in bulk solution, but without a threshold of duplex stability. In addition to quenching of fluorescence by FRET, it is believed that several other quenching mechanisms are occurring at the surface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...