RESUMEN
Helicoverpa armigera, the cotton bollworm moth, is one of the world's most important crop pests, and is spreading throughout the New World from its original range in the Old World. In Brazil, invasive H. armigera has been reported to hybridize with local populations of Helicoverpa zea. The correct identification of H. armigera-H. zea hybrids is important in understanding the origin, spread and future outlook for New World regions that are affected by outbreaks, given that hybridization can potentially facilitate H. zea pesticide resistance and host plant range via introgression of H. armigera genes. Here, we present a genome admixture analysis of high quality genome sequences generated from two H. armigera-H. zea F1 hybrids generated in two different labs. Our admixture pipeline predicts 48.8% and 48.9% H. armigera for the two F1 hybrids, confirming its accuracy. Genome sequences from five H. zea and one H. armigera that were generated as part of the study show no evidence of hybridization. Interestingly, we show that four H. zea genomes generated from a previous study are predicted to possess a proportion of H. armigera genetic material. Using unsupervised clustering to identify non-hybridized H. armigera and H. zea genomes, 8511 ancestry informative markers (AIMs) were identified. Their relative frequencies are consistent with a minor H. armigera component in the four genomes, however its origin remains to be established. We show that the size and quality of genomic reference datasets are critical for accurate hybridization prediction. Consequently, we discuss potential pitfalls in genome admixture analysis of H. armigera-H. zea hybrids, and suggest measures that will improve such analyses.
RESUMEN
Aedes aegypti transmits major arboviruses of public health importance, including dengue, chikungunya, Zika, and yellow fever. The use of insecticides represents the cornerstone of vector control; however, insecticide resistance in Ae. aegypti has become widespread. Understanding the molecular basis of insecticide resistance in this species is crucial to design effective resistance management strategies. Here, we applied Illumina RNA-Seq to study the gene expression patterns associated with resistance to three widely used insecticides (malathion, alphacypermethrin, and lambda-cyhalothrin) in Ae. aegypti populations from two sites (Manatí and Isabela) in Puerto Rico (PR). Cytochrome P450s were the most overexpressed detoxification genes across all resistant phenotypes. Some detoxification genes (CYP6Z7, CYP28A5, CYP9J2, CYP6Z6, CYP6BB2, CYP6M9, and two CYP9F2 orthologs) were commonly overexpressed in mosquitoes that survived exposure to all three insecticides (independent of geographical origin) while others including CYP6BY1 (malathion), GSTD1 (alpha-cypermethrin), CYP4H29 and GSTE6 (lambda-cyhalothrin) were uniquely overexpressed in mosquitoes that survived exposure to specific insecticides. The gene ontology (GO) terms associated with monooxygenase, iron binding, and passive transmembrane transporter activities were significantly enriched in four out of six resistant vs. susceptible comparisons while serine protease activity was elevated in all insecticide-resistant groups relative to the susceptible strain. Interestingly, cuticular-related protein genes (chinase and chitin) were predominantly downregulated, which was also confirmed in the functional enrichment analysis. This RNA-Seq analysis presents a detailed picture of the candidate detoxification genes and other pathways that are potentially associated with pyrethroid and organophosphate resistance in Ae. aegypti populations from PR. These results could inform development of novel molecular tools for detection of resistance-associated gene expression in this important arbovirus vector and guide the design and implementation of resistance management strategies.
Asunto(s)
Aedes , Insecticidas , Infección por el Virus Zika , Virus Zika , Animales , Transcriptoma , Insecticidas/farmacología , Aedes/genética , Malatión , Puerto Rico , Resistencia a los Insecticidas/genética , Mosquitos VectoresRESUMEN
Despite some previous examples of successful application to the field of pharmacogenomics, the utility of machine learning (ML) techniques for warfarin dose predictions in Caribbean Hispanic patients has yet to be fully evaluated. This study compares seven ML methods to predict warfarin dosing in Caribbean Hispanics. This is a secondary analysis of genetic and non-genetic clinical data from 190 cardiovascular Hispanic patients. Seven ML algorithms were applied to the data. Data was divided into 80 and 20% to be used as training and test sets. ML algorithms were trained with the training set to obtain the models. Model performance was determined by computing the corresponding mean absolute error (MAE) and % patients whose predicted optimal dose were within ±20% of the actual stabilization dose, and then compared between groups of patients with "normal" (i.e., > 21 but <49 mg/week), low (i.e., ≤21 mg/week, "sensitive"), and high (i.e., ≥49 mg/week, "resistant") dose requirements. Random forest regression (RFR) significantly outperform all other methods, with a MAE of 4.73 mg/week and 80.56% of cases within ±20% of the actual stabilization dose. Among those with "normal" dose requirements, RFR performance is also better than the rest of models (MAE = 2.91 mg/week). In the "sensitive" group, support vector regression (SVR) shows superiority over the others with lower MAE of 4.79 mg/week. Finally, multivariate adaptive splines (MARS) shows the best performance in the resistant group (MAE = 7.22 mg/week) and 66.7% of predictions within ±20%. Models generated by using RFR, MARS, and SVR algorithms showed significantly better predictions of weekly warfarin dosing in the studied cohorts than other algorithms. Better performance of the ML models for patients with "normal," "sensitive," and "resistant" to warfarin were obtained when compared to other populations and previous statistical models.
RESUMEN
A large discrepancy between the Amerindian contribution to the mitochondrial and nuclear genetic components of 55 Puerto Rican (PR) genomes from the 1000 Genomes Project is identified, with Amerindian mitochondrial haplotypes being highly represented (67.3%), in strong contrast to the Amerindian autosomal contribution (12.9%). I examine the potential causes behind this strong mitonuclear discordance. The Amerindian contribution to the X chromosome is 19.8%, implying assortative mating with Amerindian females during the establishment of the PR population. However, this scenario does not account for the extraordinarily high Amerindian mitochondrial contribution. Demographic simulation of simple assortative mating scenarios during establishment of the PR population indicates that the observed Amerindian mitochondrial contribution is higher than expected. The simulations show that expansion from a small founding population does not produce the observed frequencies, instead producing the frequencies expected under neutrality, with the Amerindian mitochondrial frequencies approximately twice the Amerindian autosomal proportion. In addition, multiple replicated simulations show that drift is an unlikely explanation for the elevated Amerindian mitochondrial frequency, as these are unable to produce the elevated Amerindian mitochondrial frequency observed in the PR genomic dataset, under a range of different starting conditions. I conclude that the mitonuclear discordance appears most consistent with adaptive mitochondrial benefit; however, the molecular mechanism(s) remain to be characterized before this can be confirmed and warrant further investigation. Lastly, I show potential evidence of selection on autosomes and allosomes, using admixture proportions. Interestingly, the major histocompatibility complex locus on chromosome 6 shows greatly elevated single nucleotide polymorphism density but is unaccompanied by strong admixture variance. The observations on mitonuclear discordance may affect the interpretation of apparent assortative mating in recent human admixture events, which should be treated with caution when relying only on mitochondrial haplotype frequencies.
Asunto(s)
Indio Americano o Nativo de Alaska/genética , ADN Mitocondrial/genética , Hispánicos o Latinos/genética , Cromosomas Humanos X/genética , Evolución Molecular , Femenino , Flujo Genético , Variación Genética , Genoma Humano , Haplotipos , Humanos , Masculino , Modelos Genéticos , Puerto Rico , Selección GenéticaRESUMEN
Forensic science concerns the application of scientific techniques to questions of a legal nature and may also be used to address questions of historical importance. Forensic techniques are often used in legal cases that involve crimes against persons or property, and they increasingly may involve cases of bioterrorism, crimes against nature, medical negligence, or tracing the origin of food- and crop-borne disease. Given the rapid advance of genome sequencing and comparative genomics techniques, we ask how these might be used to address cases of a forensic nature, focusing on the use of microbial genome sequence analysis. Such analyses rely on the increasingly large numbers of microbial genomes present in public databases, the ability of individual investigators to rapidly sequence whole microbial genomes, and an increasing depth of understanding of their evolution and function. Suggestions are made as to how comparative microbial genomics might be applied forensically and may represent possibilities for the future development of forensic techniques. A particular emphasis is on the nascent field of genomic epidemiology, which utilizes rapid whole-genome sequencing to identify the source and spread of infectious outbreaks. Also discussed is the application of comparative microbial genomics to the study of historical epidemics and deaths and how the approaches developed may also be applicable to more recent and actionable cases.
Asunto(s)
Medicina Legal/métodos , Genómica/métodos , Técnicas Microbiológicas/métodos , Animales , Humanos , Análisis de Secuencia de ADNRESUMEN
Helicobacter pylori is a bacterium that lives in the human stomach and is a major risk factor for gastric cancer and ulcers. H.pylori is host dependent and has been carried with human populations around the world after their departure from Africa. We wished to investigate how H.pylori has coevolved with its host during that time, focusing on strains from Japanese and European populations, given that gastric cancer incidence is high in Japanese populations, while low in European. A positive selection analysis of eight H.pylori genomes was conducted, using maximum likelihood based pairwise comparisons in order to maximize the number of strain-specific genes included in the study. Using the genic Ka/Ks ratio, comparisons of four Japanese H.pylori genomes suggests 25-34 genes under positive selection, while four European H.pylori genomes suggests 16-21 genes; few of the genes identified were in common between lineages. Of the identified genes which were annotated, 38% possessed homologs associated with pathogenicity and / or host adaptation, consistent with their involvement in a coevolutionary 'arms race' with the host. Given the efficacy of identifying host interaction factors de novo, in the absence of functionally annotated homologs our evolutionary approach may have value in identifying novel genes which H.pylori employs to interact with the human gut environment. In addition, the larger number of genes inferred as being under positive selection in Japanese strains compared to European implies a stronger overall adaptive pressure, potentially resulting from an elevated immune response which may be linked to increased inflammation, an initial stage in the development of gastric cancer.
RESUMEN
OBJECTIVE: HIV-1 variants with different tropisms are associated with various neuropathologies. This study intends to determine if this correlation is determined by unique viral env sequences. We hypothesize that HIV-1 envelope gene sequence changes are associated with cognition status. METHODS: Viral RNA was extracted from peripheral blood mononuclear cells (PBMCs) co-cultures derived from HIV-1 infected Hispanic women that had been characterized for HIV associated neurocognitive disorders (HAND). RESULTS: Analyses of the C2V4 region of HIV gp120 demonstrated that increased sequence diversity correlates with cognition status as sequences derived from subjects with normal cognition exhibited less diversity than sequences derived from subjects with cognitive impairment. In addition, differences in V3 and V4 loop charges were also noted as well as differences in the N-glycosylation of the V4 region. CONCLUSIONS: Our data suggest that the genetic signature within the C2V4 region may contribute to the pathogenesis of HAND. HIV env sequence characteristics for the isolates grouped in milder forms of HAND can provide insightful information of prognostic value to assess neurocognitive status in HIV+ subjects, particularly during the era of highly prevalent milder forms of HAND.
RESUMEN
Coprolites are fossilized feces that can be used to provide information on the composition of the intestinal microbiota and, as we show, possibly on diet. We analyzed human coprolites from the Huecoid and Saladoid cultures from a settlement on Vieques Island, Puerto Rico. While more is known about the Saladoid culture, it is believed that both societies co-existed on this island approximately from 5 to 1170 AD. By extracting DNA from the coprolites, followed by metagenomic characterization, we show that both cultures can be distinguished from each other on the basis of their bacterial and fungal gut microbiomes. In addition, we show that parasite loads were heavy and also culturally distinct. Huecoid coprolites were characterized by maize and Basidiomycetes sequences, suggesting that these were important components of their diet. Saladoid coprolite samples harbored sequences associated with fish parasites, suggesting that raw fish was a substantial component of their diet. The present study shows that ancient DNA is not entirely degraded in humid, tropical environments, and that dietary and/or host genetic differences in ancient populations may be reflected in the composition of their gut microbiome. This further supports the hypothesis that the two ancient cultures studied were distinct, and that they retained distinct technological/cultural differences during an extended period of close proximity and peaceful co-existence. The two populations seemed to form the later-day Taínos, the Amerindians present at the point of Columbian contact. Importantly, our data suggest that paleomicrobiomics can be a powerful tool to assess cultural differences between ancient populations.
Asunto(s)
Heces/microbiología , Microbiología , Microbiota , Paleontología , Grupos de Población , Dieta , Heces/parasitología , Humanos , Puerto Rico/etnología , ARN Ribosómico 16S/genéticaRESUMEN
DNA repair is expected to be a modulator of underlying mutation rates, however the major factors affecting the distribution of DNA repair pathways have not been determined. The Proteomic Constraint theory proposes that mutation rates are inversely proportional to the amount of heredity information contained in a genome, which is effectively the proteome. Thus, organisms with larger proteomes are expected to possess more efficient DNA repair. We show that an important factor influencing the presence or absence of four DNA repair genes mutM, mutY, mutL, and mutS is indeed the size of the bacterial proteome. This is true both of intracellular and other bacteria. In addition, the relationship of DNA repair to genome GC content was examined. In principle, if a DNA repair pathway is biased in the types of mutations it corrects, this may alter the genome GC content. The presence of the mismatch repair genes mutL and mutS was not correlated with genome GC content, consistent with their involvement in an unbiased DNA repair pathway. In contrast, the presence of the base excision repair genes mutM and mutY, whose products both correct GC â AT mutations, was positively correlated with genome GC content, consistent with their biased repair mechanism. Phylogenetic analysis however indicates that the relationship between the presence of mutM and mutY genes and genome GC content is not a simple one.
RESUMEN
We have employed electron microscopic, biochemical, and molecular techniques to clarify the species of origin of the "Chilean Blob," the remains of a large sea creature that beached on the Chilean coast in July 2003. Electron microscopy revealed that the remains are largely composed of an acellular, fibrous network reminiscent of the collagen fiber network in whale blubber. Amino acid analyses of an acid hydrolysate indicated that the fibers are composed of 31% glycine residues and also contain hydroxyproline and hydroxylysine, all diagnostic of collagen. Using primers designed to the mitochondrial gene nad2, an 800-bp product of the polymerase chain reaction (PCR) was amplified from DNA that had been purified from the carcass. The DNA sequence of the PCR product was 100% identical to nad2 of sperm whale (Physeter catadon). These results unequivocally demonstrate that the Chilean Blob is the almost completely decomposed remains of the blubber layer of a sperm whale. This identification is the same as those we have obtained before from other relics such as the so-called giant octopus of St. Augustine (Florida), the Tasmanian West Coast Monster, two Bermuda Blobs, and the Nantucket Blob. It is clear now that all of these blobs of popular and cryptozoological interest are, in fact, the decomposed remains of large cetaceans.