Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Econ Entomol ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38768376

RESUMEN

Fall armyworm, Spodoptera frugiperda Smith, became the most important maize pest in Africa in 2016, with management based on chemical pesticides. High yield losses across the continent were predicted based on farmers' perceptions, but existing agroecological differences were not considered. In the Democratic Republic of Congo, experiments were conducted to assess fall armyworm damage and yield losses in maize farms with and without treatment. The study included 2 seasons in the Kipopo wetland in 2020 and 2021, one rainy season in Kanyameshi in 2021, 2 rainy seasons in Mulungu in 2020 and 2021, and one season in a wetland on the Bishibiru site in 2020. In addition, the research was also conducted at 4 sites in Cameroon from September to December 2020 and from March to July 2021. High levels of damage incidences were recorded, but the density of larvae per plant was low, with low to moderate levels of damage severities in different seasons and sites. Treatment significantly reduced the number of fall armyworm larvae and their damage severity. However, the high infestation levels did not significantly reduce yield. Cost-benefit ratios were either negative or, in most cases, less than 1. In the best case, the use of pesticides only allowed the recovery of the amount used for the intervention. We discussed the implications of these findings for fall armyworm management in humid tropical agroecology.

2.
J Sci Food Agric ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37969044

RESUMEN

BACKGROUND: Retting is a key step of cassava processing into widely consumed foods (fufu, chikwangue, miondo and bobolo) in sub-Saharan Africa. For some populations, retting ability is a major quality criterion that drives the adoption of new cassava varieties. Despite this importance, the physiological basis associated with this process remains poorly understood, and should lead to improved screening tools for breeding. Eight cassava varieties contrasting in retting ability properties were used in the present study. Roots and soaking water were sampled during retting and characterized at both histological and biochemical levels. RESULTS: Histological data highlighted the degradation of root cell wall during retting. The average pH of soaking water decreased from 5.94 to 4.31 and the average simple sugars decreased from 0.18 to 0 g L-1 , whereas the organic acids increased up to 5.61 g L-1 . In roots tissue, simple sugars and organic acid contents decreased from 22.9 to 0 g kg-1 and from 80 to 0 g kg-1 , respectively. The total pectin content of roots among varieties at harvest was similar, and decreased during the retting process. Overall, there was a negative correlation between total pectins content and root softening, although this did not reach statistical significance. CONCLUSION: Major histological and biochemical changes occurred during cassava root retting, with some of them associated with the process. Retting affected starch pasting properties more than starch content. Although this process is characterized by root softening and degradation of cell wall structure, the present study strongly suggested that pectin is not the only cell wall component involved in these changes. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

3.
Food Sci Nutr ; 10(9): 3085-3097, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36171793

RESUMEN

Plantain flour (PLF) and soy flour (SF) were used to substitute wheat flour (10% and 20% w/w) in composite bread. Physicochemical, phytochemical, and sensory properties were investigated. Partial substitution by PLF significantly increased (p < .05) starch, amylose, ascorbic acid, and potassium content in bread samples. In contrast, a significant improvement (p < .05) in protein, fat, amylopectin, and calcium content was observed with SF substitution. Composite bread with PLF and SF together lowered the hydrolysis index (HI) and glycemic index (GI) as compared with whole wheat flour. The molar phytate to minerals (iron, zinc, and calcium) ratio in all composite loaves was lower than reported critical values, except for phytate to iron. Significant differences (p < .05) were found in color, specific volume, and texture characteristics of loaves made from partial substitution with PLF and SF. Sensory evaluation revealed that bread with 10% PLF exhibited better scores for appearance and willingness to pay than the control. In contrast, SF negatively affected (p < .05) the appearance, texture, color, overall acceptance, and willingness to pay. The trade-off analysis indicated that PLF can be utilized to produce bread that meets consumers' demands, while incorporating SF as an alternative high-nutrient density bread will be beneficial to health.

4.
Curr Microbiol ; 79(9): 252, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35834125

RESUMEN

An active microbial community of nitrifying and denitrifying bacteria is needed for efficient utilization of nitrogenous compounds from wastewater. In this study, we explored the bacterial community diversity and structure within rivers, treated and untreated wastewater treatment plants (WWTPs) discharging into Lake Victoria. Water samples were collected from rivers and WWTPs that drain into Lake Victoria. Physicochemical analysis was done to determine the level of nutrients or pollutant loading in the samples. Total community DNA was extracted, followed by Illumina high throughput sequencing to determine the total microbial community and abundance. Enrichment and isolation were then done to recover potential nitrifiers and denitrifiers. Physicochemical analysis pointed to high levels total nitrogen and ammonia in both treated and untreated WWTPs as compared to the samples from the lake and rivers. A total of 1,763 operational taxonomic units (OTUs) spread across 26 bacterial phyla were observed with the most dominant phylum being Proteobacteria. We observed a decreasing trend in diversity from the lake, rivers to WWTPs. The genus Planktothrix constituted 19% of the sequence reads in sample J2 collected from the lagoon. All the isolates recovered in this study were affiliated to three genera: Pseudomonas, Klebsiella and Enterobacter in the phylum Proteobacteria. A combination of metagenomic analysis and a culture-dependent approach helped us understand the relative abundance as well as potential nitrifiers and denitrifiers present in different samples. The recovered isolates could be used for in situ removal of nitrogenous compounds from contaminated wastewater.


Asunto(s)
Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Lagos , Aguas Residuales/microbiología , Purificación del Agua , Bacterias/clasificación , Bacterias/aislamiento & purificación , Desnitrificación , Enterobacter/clasificación , Enterobacter/crecimiento & desarrollo , Enterobacter/metabolismo , Kenia , Klebsiella/clasificación , Klebsiella/crecimiento & desarrollo , Klebsiella/aislamiento & purificación , Klebsiella/metabolismo , Lagos/química , Lagos/microbiología , Nitrificación , Proteobacteria/clasificación , Proteobacteria/crecimiento & desarrollo , Proteobacteria/aislamiento & purificación , Proteobacteria/metabolismo , Pseudomonas/clasificación , Pseudomonas/crecimiento & desarrollo , Pseudomonas/aislamiento & purificación , Pseudomonas/metabolismo , Ríos/microbiología , Aguas Residuales/química
5.
Microb Ecol ; 84(2): 580-593, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34585290

RESUMEN

Plantain (Musa spp.) is a staple food crop and an important source of income for millions of smallholder farmers in sub-Saharan Africa (SSA). However, there is a paucity of knowledge on soil microbial diversity in agroecologies where plantains are grown. Microbial diversity that increases plant performance with multi-trophic interactions involving resiliency to environmental constraints is greatly needed. For this purpose, the bacterial and fungal communities of plantain fields in high rainfall forests (HR) and derived savannas (SV) were studied using Illumina MiSeq for 16S rDNA and ITS amplicon deep sequencing. Microbial richness (α- and ß-diversity), operational taxonomic units, and Simpson and Shannon-Wiener indexes (observed species (Sobs), Chao, ACE; P < 0.05) suggested that there were significant differences between HR and SV agroecologies among the most abundant bacterial communities, and some specific dynamic response observed from fungal communities. Proteobacteria formed the predominant bacterial phylum (43.7%) succeeded by Firmicutes (24.7%), and Bacteroidetes (17.6%). Ascomycota, Basidiomycota, and Zygomycota were the three most dominant fungal phyla in both agroecologies. The results also revealed an immense array of beneficial microbes in the roots and rhizosphere of plantain, including Acinetobacter, Bacillus, and Pseudomonas spp. COG and KEGG Orthology database depicted significant variations in the functional attributes of microbes found in the rhizosphere to roots. This result indicates that the different agroecologies and host habitats differentially support the dynamic microbial profile and that helps in altering the structure in the rhizosphere zone for the sake of promoting synergistic host-microbe interactions particularly under resource-poor conditions of SSA.


Asunto(s)
Ascomicetos , Microbiota , Musa , Plantago , África Central , Ascomicetos/genética , Bacterias/genética , Microbiota/fisiología , Musa/microbiología , Raíces de Plantas/microbiología , Rizosfera , Microbiología del Suelo
6.
PLoS One ; 16(9): e0256498, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34469477

RESUMEN

In this study we investigate whether the increasing investment in smallholder oil palm plantations that contributes to deforestation is motivated by financial gains or other factors. We evaluate the financial viability of smallholder farmers selling fresh fruit bunches (FFBs) to intermediaries or agro-industrial companies with mills, or processing the FFBs in artisanal mills to produce palm oil. We use data collected in four oil palm production basins in Cameroon and carried out a life cycle assessment of oil palm cultivation and CPO production to understand financial gains. We use payback period (PBP), internal rate of return (IRR), benefit cost ratio (BCR) and net present value (NPV) for 1 ha of oil palm plantation over 28 years at a base discount rate of 8% to asses viability. Our results show that smallholders make more money processing their FFBs in artisanal mills to produce CPO than selling FFBs to intermediaries or agro-industrial companies with mills. The sensitivity analysis show that land ownership is the single most important parameter in the profitability of investment in palm oil cultivation and trade. In addition to land cost, smallholders suffer from borrowing at high interest rates, high field management costs, while recording low on-farm FFB/processing yields. To improve the financial viability of smallholders investing in oil palm cultivation, measures are needed to encourage them to access land, get loans at reduced interest rates, reduce the cost of field management, adopt good agricultural practices to improve on-farm FFB/processing yields, as well as to generate additional revenue from the sale of other products.


Asunto(s)
Conservación de los Recursos Naturales/economía , Granjas/economía , Frutas/economía , Inversiones en Salud , Aceite de Palma/economía , Camerún , Análisis Costo-Beneficio , Agricultores , Humanos , Modelos Económicos , Pobreza
7.
Foods ; 10(8)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34441527

RESUMEN

The effect of cultivar, ripening stage, and pre-treatment method were investigated on the nutritional, physicochemical, and pasting properties of plantain flours from two plantains and two plantain hybrids. There were significant variations (p < 0.05) in chemical composition and physical properties influenced by the interaction of cultivars, ripening stages, and pre-treatment methods. The highest levels of amylose, water-holding capacity (WHC), and oil-holding capacity (OHC) were observed in unripe flours and acid-treated flour recorded the highest content of resistant starch (RS). Flour after pre-blanching contained the highest level of total phenolic (TP), carotenoid contents, and browning index (BI) value. In contrast, acid-treated flours had the lowest BI value. As ripening progressed, peak viscosity and breakdown values increased but final viscosity, setback, and pasting temperature values were reduced. Untreated flour samples showed the highest peak viscosity. Higher breakdown values were found in acid-treated samples and higher setback values in pre-blanched samples.

8.
Foods ; 10(8)2021 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-34441732

RESUMEN

Plantain is a key staple food in Central and West Africa, but there is limited understanding of its market in Africa. In addition, the cooking methods for enhancing the nutritional value, consumer preference, and willingness to pay for plantain and plantain-based products are not well understood. The knowledge gaps in the market and consumer dimension of the food chain need to be known to increase plantain utilization and guide breeding efforts. This research contributes by examining the cooking methods, consumer preference, and willingness to pay for plantain and plantain-based products in Cameroon and Nigeria. A household survey sample of 454 Cameroonian consumers in four divisions of Central Region and 418 Nigerian consumers in seven government areas of Oyo State in southwest Nigeria was the basis for the analysis. The results showed some levels of similarity and difference in the consumption and cooking of boiled, roasted, and fried plantain in both countries. The trend in consumption of all plantain-based products was constant in Cameroon but increased in Nigeria. The most important factor influencing Cameroonian consumers' choice of plantain and its products was taste, while the nutrition trait influenced Nigerian consumers. Both Cameroonian and Nigerian consumers considered packaging, location of produce, and size and quantity as the least important factors. In addition, socioeconomic characteristics were significant determinants of consumers' choices to consume plantain and its products. Gender significantly influenced (p < 0.05) taste, while nutrition was significantly driven (p < 0.05) by education and annual income. Household size played a significant role (p < 0.05) in consumers' choices when the price was considered. These findings serve as a guideline to improve existing products to match the needs of consumers in each country and develop products for different consumer segments and potentially increase production.

9.
Front Plant Sci ; 12: 693037, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34239529

RESUMEN

A vast majority of terrestrial plants are dependent on arbuscular mycorrhizal fungi (AMF) for their nutrient acquisition. AMF act as an extension of the root system helping phosphate uptake. In agriculture, harnessing the symbiosis can potentially increase plant growth. Application of the AMF Rhizophagus irregularis has been demonstrated to increase the yields of various crops. However, there is a paradigm that AMF colonization of roots, as well as the plant benefits afforded by inoculation with AMF, decreases with increasing phosphorus (P) supply in the soil. The paradigm suggests that when fertilized with sufficient P, inoculation of crops would not be beneficial. However, the majority of experiments demonstrating the paradigm were conducted in sterile conditions without a background AMF or soil microbial community. Interestingly, intraspecific variation in R. irregularis can greatly alter the yield of cassava even at a full application of the recommended P dose. Cassava is a globally important crop, feeding 800 million people worldwide, and a crop that is highly dependent on AMF for P uptake. In this study, field trials were conducted at three locations in Kenya and Tanzania using different AMF and cassava varieties under different P fertilization levels to test if the paradigm occurs in tropical field conditions. We found that AMF colonization and inoculation responsiveness of cassava does not always decrease with an increased P supply as expected by the paradigm. The obtained results demonstrate that maximizing the inoculation responsiveness of cassava is not necessarily only in conditions of low P availability, but that this is dependent on cassava and fungal genotypes. Thus, the modeling of plant symbiosis with AMF under different P levels in nature should be considered with caution.

10.
Insects ; 12(6)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34072988

RESUMEN

Fall armyworm (FAW) Spodoptera frugiperda (J.E. Smith) and southern armyworm (SAW) Spodoptera eridania (Stoll) have become major threats to crops in Africa since 2016. African governments adopted emergency actions around chemical insecticides, with limited efforts to assess the richness or roles of indigenous natural enemies. Field surveys and laboratory studies were conducted to identify and assess the performance of parasitoids associated with spodopterans in Cameroon. FAW was the most abundant spodopteran pest. Telenomus remus (Nixon), Trichogramma chilonis (Ishi), Charops sp. (Szépligeti), Coccygidium luteum (Cameron), Cotesia icipe (Fernandez & Fiaboe), and Cotesia sesamiae (Cameron) are the first records in the country on spodopterans. Telenomus remus, T. chilonis, C. icipe, and Charops sp. were obtained from both FAW and SAW; C. luteum and C. sesamiae from FAW. The distribution of spodopterans, their endoparasitoids, and parasitism rates varied with host, season and location. In the laboratory, T. remus showed significantly higher parasitism on FAW than SAW, and significant differences in the development parameters between the two host eggs, with shorter development time on FAW. It induced significant non-reproductive mortality on FAW but not on SAW. Developmental parameters showed that C. icipe has a shorter development time compared to other larval parasitoids. Implications for conservative and augmentative biocontrol are discussed.

11.
Sci Rep ; 11(1): 7394, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33795808

RESUMEN

Cassava is a key food security crop in Central Africa, but its production depends largely on the use of local farmers' varieties characterized by inherently low yield which is compounded by generally high susceptibility to various growth and yield-limiting pests and diseases. Improved cassava genotypes have demonstrated the potential to substantially improve cassava's contribution to food security and the development of the cassava industry and the improvement of nutrition status elsewhere in Western Africa. Eleven improved cassava genotypes were compared with a local landrace (LMR) used as a check under field conditions over two years in eight locations, grouped in four agro-ecologies in Cameroon. Pest and disease abundance/incidence and damage severity were evaluated. At harvest, root yield and carotenoid content were measured. Best linear unbiased predictors showed the lowest breeding value for LMR with the cassava mosaic virus disease (+ 66.40 ± 2.42) compared with 1.00 ± 0.02% for the most susceptible improved genotype. Two genotypes (I010040-27 and I011797) stood out for having higher predicted fresh root yield means which were at least 16 times greater compared with LMR. Predicted total carotenoid content was the highest (+ 5.04 ± 0.17) for improved genotype I070593 compared with LMR which showed the lowest (- 3.90 ± 0.06%) and could contribute to the alleviation of vitamin A deficiency from cassava-based food systems. Diffusion of high-yielding and nutritious genotypes could alleviate food and nutritional security in Central Africa.


Asunto(s)
Ecología , Genotipo , Manihot/genética , Fitomejoramiento , África Central , África Occidental , Agricultura/métodos , Biomasa , Camerún , Carotenoides/metabolismo , Agricultores , Alimentos , Geografía , Concentración de Iones de Hidrógeno , Modelos Lineales , Suelo
12.
Sci Rep ; 10(1): 14286, 2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32868856

RESUMEN

Increased adoption of improved agricultural technologies is considered an essential step to address global poverty and hunger, and agronomic trials suggest intensification in developing countries could result in large yield gains. Yet the promise of new technologies does not always carry over from trials to real-life conditions, and diffusion of many technologies remains limited. We show how parcel and farmer selection, together with behavioural responses in agronomic trials, can explain why yield gain estimates from trials may differ from the yield gains of smallholders using the same inputs under real-life conditions. We provide quantitative evidence by exploiting variation in farmer selection and detailed data collection from research trials in Western Kenya on which large yield increments were observed from improved input packages for maize and soybean. After adjusting for selection, behavioural responses, and other corrections, estimates of yield gains fall to being not significantly different from zero for the input package tested on one of the crops (soybean), but remain high for the other (maize). These results suggest that testing new agricultural technologies in real-world conditions and without researcher interference early in the agricultural research and development process might help with identifying which innovations are more likely to be taken up at scale.


Asunto(s)
Producción de Cultivos/estadística & datos numéricos , Producción de Cultivos/métodos , Países en Desarrollo , Agricultores , Humanos , Kenia , Investigación , Glycine max/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo
13.
Front Plant Sci ; 11: 596929, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33424891

RESUMEN

Water scarcity negatively impacts global crop yields and climate change is expected to greatly increase the severity of future droughts. The use of arbuscular mycorrhizal fungi (AMF) can potentially mitigate the effects of water stress in plants. Cassava is a crop that feeds approximately 800 million people daily. Genetically different isolates of the AMF R. irregularis as well as their clonal progeny have both been shown to greatly alter cassava growth in field conditions. Given that cassava experiences seasonal drought in many of the regions in which it is cultivated, we evaluated whether intraspecific variation in R. irregularis differentially alters physiological responses of cassava to water stress. In a first experiment, conducted in field conditions in Western Kenya, cassava was inoculated with two genetically different R. irregularis isolates and their clonal progeny. All cassava plants exhibited physiological signs of stress during the dry period, but the largest differences occurred among plants inoculated with clonal progeny of each of the two parental fungal isolates. Because drought had not been experimentally manipulated in the field, we conducted a second experiment in the greenhouse where cassava was inoculated with two genetically different R. irregularis isolates and subjected to drought, followed by re-watering, to allow recovery. Physiological stress responses of cassava to drought differed significantly between plants inoculated with the two different fungi. However, plants that experienced higher drought stress also recovered at a faster rate following re-watering. We conclude that intraspecific genetic variability in AMF significantly influences cassava physiological responses during water stress. This highlights the potential of using naturally existing variation in AMF to improve cassava tolerance undergoing water stress. However, the fact that clonal progeny of an AMF isolate can differentially affect how cassava copes with natural drought stress in field conditions, highlights the necessity to understand additional factors, beyond genetic variation, which can account for such large differences in cassava responses to drought.

14.
Soil Tillage Res ; 194: 104290, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31680708

RESUMEN

Rhizobia inoculation can increase soybean yield, but its performance is influenced by among others soybean genotype, rhizobia strains, environment, and crop management. The objective of the study was to assess soybean response to rhizobia inoculation when grown in soils amended with urea or vermicompost to improve nitrogen levels. Two greenhouse experiments and one field trial at two sites were carried out. The first greenhouse experiment included soils from sixty locations, sampled from smallholder farms in Western Kenya. The second greenhouse experiment consisted of one soil selected among soils used in the first experiment where inoculation response was poor. The soil was amended with vermicompost or urea. In the two greenhouse experiments, Legumefix (inoculant) + Sympal (legume fertilizer blend) were used as a standard package. Results from the second greenhouse experiment were then validated in the field. Analysis of variance was done using SAS statistical software and mean separation was done using standard error of the difference for shoot biomass, grain yield nodulation, nodule effectiveness and nutrient uptake. In the first greenhouse trial, soybean response to inoculation was significantly affected by soil fertility based on nodule fresh weight and shoot biomass. Soils with low nitrogen had low to no response to inoculation. After amendment, nodule fresh weight, nodule effectiveness, nodule occupancy, and shoot dry biomass were greater in the treatment amended with vermicompost than those amended with urea (Legumefix + Sympal + vermicompost and Legumefix + Sympal + urea) respectively. Under field conditions, trends were similar to the second experiment for nodulation, nodule occupancy and nitrogen uptake resulting in significantly greater grain yields (475, 709, 856, 880, 966 kg ha-1) after application of vermicompost at 0, 37, 74, 111, and 148 kg N ha-1 respectively. It was concluded that soybean nodulation and biological nitrogen fixation in low fertility soils would not be suppressed by organic amendments like vermicompost up to 148 kg N ha-1.

15.
PLoS One ; 14(6): e0218969, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31242274

RESUMEN

The adaptability of cassava to low fertile and marginal soils facilitates its production in subsistent agriculture. As a result, smallholder farmers rarely apply fertilizers. The current yield gap is therefore very large, calling for application of fertilizers and soil amendments to improve its productivity. Field experiments were carried out to assess the potential of partially substituting Phosphorus (P) fertilizers by in vitro-produced arbuscular mycorrhizal fungal (AMF) inoculants in cassava production in two agro-ecologies of Nigeria: Northern Guinea Savanna (Samaru) and Sudan Savanna (Minjibir). The experiments were laid out in a split plot design with P levels (0, 17.5, 35 and 52.5 kg P2O5 ha-1) as main plot and AMF inoculants (Control, Glomygel, Glomygel carrier, Mycodrip, Mycodrip carrier) as subplots. The results in Samaru showed that there was significant interaction between AMF and P in root fresh weight, total biomass and root to shoot ratio. The root fresh weights of the inoculated cassava increased proportionally with application of P. However, highest root fresh weight of cassava inoculated with Glomygel was observed at 35 kg P2O5 ha-1 recording 25% yield increase compared to 52.5 kg P2O5 ha-1 application. Interestingly, Cassava inoculated with Glomygel at 17.5 kg P2O5 ha-1 gave root fresh yield statistically similar to where 35 kg P2O5 ha-1 was applied. This represented a 50% reduction in P fertilizer use. Also, cassava inoculated with Glomygel increased leaf nutrient concentrations, which strongly correlated with the root fresh yield. However, no effects of inoculant carriers were observed in yield and nutrient concentrations. Contrarily, there was no significant treatment effect in Minjibir for nearly all the measured parameters. Cassava yield was however, higher in Minjibir than Samaru probably due to soil fertility and structural differences, which resulted in few observable effects of AMF and P treatments at Minjibir. We conclude that under low P conditions inoculation with in vitro produced AMF inoculants could be employed to reduce P fertilizer requirements for cassava and improve yields, but the variability of the responses as a result of soil heterogeneity and the identity of the fungal strain in the inoculant require further investigations before recommending the practice.


Asunto(s)
Inoculantes Agrícolas/fisiología , Manihot/crecimiento & desarrollo , Micorrizas/fisiología , Fósforo/farmacología , Biomasa , Fertilizantes , Manihot/química , Manihot/efectos de los fármacos , Manihot/microbiología , Nigeria , Nutrientes/análisis , Hojas de la Planta/química , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/microbiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología
17.
PLoS One ; 14(4): e0215749, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31034480

RESUMEN

Maize farmers in sub-Saharan Africa recently experienced unusual damage in their farms, attributed to the fall armyworm (FAW) Spodoptera frugiperda (J. E. Smith). This pest was first recorded in Africa in 2016, but detailed information on its distribution and damage and farmer's response in invaded areas are largely lacking. In this study, we determined FAW distribution, genetic diversity, host plants, crop damage, and farmers' responses. S. frugiperda was recorded in the 10 regions of Cameroon. Average percentage of infested plants and damage severity (on a scale of 1 to 5) were lowest-20.7 ± 7.4% and 2.1 ± 0.1 respectively-in the Sahelian regions and greatest-69.0 ± 4.3% and 3.1 ± 0.1 respectively-in the Western Highlands. Altitude did not influence FAW incidence and severity and its larvae infrequently co-occurred with maize stemborers on the same plants, suggesting possible direct and/or indirect competition between the two groups of maize pests. In response to this new threat to maize production, farmers have opted for the application of synthetic pesticides. Although our experiments were not designed to determine pesticide efficacy, as parameters such as time since application were not considered, our observations suggest lack of a drastic effect on S. frugiperda infestations on maize. There were two haplotypes of FAW co-occurring in Cameroon corresponding to the rice and corn strains and separated by 1.7% sequence divergence, which does not support the existence of cryptic species. S. frugiperda larvae were also recorded on Sorghum bicolor (L.) Moench (10.6%), Solanum tuberosum L. (2.8%), Ipomoea batatas (L.) Lam. (1.9%), Saccharum officinarum L (0.8%), Phaseolus vulgaris L. (0.4%) and Gossypium hirsutum L. (1.9%). This study show that two strains are present in all agroecological zones in Cameroon, and probably in neighboring countries of central Africa sharing the same agroecologies. Management options should therefore consider the use of specific natural enemies and an informed decision of intervention based on strain capture and damage threshold, to avoid pesticide resistance that may arise from inadequate use of chemicals. Further studies should also be undertaken to assess the response of the two S. frugiperda strains to biopesticides and botanical insecticides.


Asunto(s)
Spodoptera/patogenicidad , Animales , Camerún , Genoma de los Insectos , Interacciones Huésped-Parásitos/efectos de los fármacos , Interacciones Huésped-Parásitos/genética , Resistencia a los Insecticidas/genética , Filogenia , Enfermedades de las Plantas/parasitología , Spodoptera/genética , Spodoptera/fisiología , Zea mays/efectos de los fármacos , Zea mays/parasitología
18.
J Environ Manage ; 241: 293-304, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31009817

RESUMEN

Livestock production is important for food security, nutrition, and landscape maintenance, but it is associated with several environmental impacts. To assess the risk and benefits arising from livestock production, transparent and robust indicators are required, such as those offered by life cycle assessment. A central question in such approaches is how environmental burden is allocated to livestock products and to manure that is re-used for agricultural production. To incentivize sustainable use of manure, it should be considered as a co-product as long as it is not disposed of, or wasted, or applied in excess of crop nutrient needs, in which case it should be treated as a waste. This paper proposes a theoretical approach to define nutrient requirements based on nutrient response curves to economic and physical optima and a pragmatic approach based on crop nutrient yield adjusted for nutrient losses to atmosphere and water. Allocation of environmental burden to manure and other livestock products is then based on the nutrient value from manure for crop production using the price of fertilizer nutrients. We illustrate and discuss the proposed method with two case studies.


Asunto(s)
Fertilizantes , Estiércol , Agricultura , Animales , Producción de Cultivos , Ganado
19.
Agric Ecosyst Environ ; 267: 23-32, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30449913

RESUMEN

Soybean yields on smallholder farms in sub-Sahara Africa (SSA) are far below the potential yield thus creating a huge yield gap. Interventions are thus needed to bridge this yield gap and ascertain the factors influencing the yield variation. This study evaluated the on farm response of soybean to rhizobia inoculation and or mineral P fertilizer in Northern and Upper West regions of Ghana in a single non-replicate trial using four treatments: no input (control), TSP fertilizer (P), rhizobia inoculant (I) and TSP plus inoculant (P + I). In addition, the study sought to develop a robust approach for determining responsiveness and non-responsiveness using agronomic and economic indices. The results showed that the average grain yield of plots that received P or I were higher than control plots. Higher grain yield responses were however, obtained by the plots that received combined application of P and Bradyrhizobium inoculant. Grain yield response in the Northern region was higher than in the Upper West region. Response to P and or I were highly variable within and between locations. The cumulative rainfall and some soil factors including soil nitrogen, phosphorus, soil type, organic carbon, pH and texture explained about 42-79% of these variations in soybean grain yield. The agronomic approach for determining responsive and non-responsiveness revealed that 17-40 % and 6-17% of the locations within the Northern and Upper West regions, respectively were responsive to P fertilization and/ or Bradyrhizobium inoculation. However, the economic approach indicated that 64-75% and 14-24% of the locations within the Northern and Upper West regions, respectively were responsive to P fertilization and Bradyrhizobium inoculation. The results imply that rhizobia inoculation is an effective strategy for increasing soybean yield and improving livelihood of smallholder farmers.

20.
Front Plant Sci ; 8: 219, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28348569

RESUMEN

Sweet potato [Ipomoea batatas (L) Lam] yields currently stand at 4.5 t ha-1 on smallholder farms in Uganda, despite the attainable yield (45-48 t ha-1) of NASPOT 11 cultivar comparable to the potential yield (45 t ha-1) in sub-Saharan Africa (SSA). On-farm field experiments were conducted for two seasons in the Mt Elgon High Farmlands and Lake Victoria Crescent agro-ecological zones in Uganda to determine the potential of biofertilizers, specifically arbuscular mycorrhizal fungi (AMF), to increase sweet potato yields (NASPOT 11 cultivar). Two kinds of biofertilizers were compared to different rates of phosphorus (P) fertilizer when applied with or without nitrogen (N) and potassium (K). The sweet potato response to treatments was variable across sites (soil types) and seasons, and significant tuber yield increase (p < 0.05) was promoted by biofertilizer and NPK treatments during the short-rain season in the Ferralsol. Tuber yields ranged from 12.8 to 20.1 t ha-1 in the Rhodic Nitisol (sandy-clay) compared to 7.6 to 14.9 t ha-1 in the Ferralsol (sandy-loam) during the same season. Root colonization was greater in the short-rain season compared to the long-rain season. Biofertilizers combined with N and K realized higher biomass and tuber yield than biofertilizers alone during the short-rain season indicating the need for starter nutrients for hyphal growth and root colonization of AMF. In this study, N0.25PK (34.6 t ha-1) and N0.5PK (32.9 t ha-1) resulted in the highest yield during the long and the short-rain season, respectively, but there was still a yield gap of 11.9 and 13.6 t ha-1 for the cultivar. Therefore, a combination of 90 kg N ha-1 and 100 kg K ha-1 with either 15 or 30 kg P ha-1 can increase sweet potato yield from 4.5 to >30 t ha-1. The results also show that to realize significance of AMF in nutrient depleted soils, starter nutrients should be included.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...