Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Small Methods ; : e2301610, 2024 May 01.
Article En | MEDLINE | ID: mdl-38693080

Single impurities in insulators are now often used for quantum sensors and single photon sources, while nanoscale semiconductor doping features are being constructed for electrical contacts in quantum technology devices, implying that new methods for sensitive, non-destructive imaging of single- or few-atom structures are needed. X-ray fluorescence (XRF) can provide nanoscale imaging with chemical specificity, and features comprising as few as 100 000 atoms have been detected without any need for specialized or destructive sample preparation. Presently, the ultimate limits of sensitivity of XRF are unknown - here, gallium dopants in silicon are investigated using a high brilliance, synchrotron source collimated to a small spot. It is demonstrated that with a single-pixel integration time of 1 s, the sensitivity is sufficient to identify a single isolated feature of only 3000 Ga impurities (a mass of just 350 zg). With increased integration (25 s), 650 impurities can be detected. The results are quantified using a calibration sample consisting of precisely controlled numbers of implanted atoms in nanometer-sized structures. The results show that such features can now be mapped quantitatively when calibration samples are used, and suggest that, in the near future, planned upgrades to XRF facilities might achieve single-atom sensitivity.

2.
Sci Rep ; 14(1): 7969, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38575676

Suppression of threading dislocations (TDs) in thin germanium (Ge) layers grown on silicon (Si) substrates has been critical for realizing high-performance Si-based optoelectronic and electronic devices. An advanced growth strategy is desired to minimize the TD density within a thin Ge buffer layer in Ge-on-Si systems. In this work, we investigate the impact of P dopants in 500-nm thin Ge layers, with doping concentrations from 1 to 50 × 1018 cm-3. The introduction of P dopants has efficiently promoted TD reduction, whose potential mechanism has been explored by comparing it to the well-established Sb-doped Ge-on-Si system. P and Sb dopants reveal different defect-suppression mechanisms in Ge-on-Si samples, inspiring a novel co-doping technique by exploiting the advantages of both dopants. The surface TDD of the Ge buffer has been further reduced by the co-doping technique to the order of 107 cm-2 with a thin Ge layer (of only 500 nm), which could provide a high-quality platform for high-performance Si-based semiconductor devices.

3.
Adv Sci (Weinh) ; 10(35): e2304261, 2023 Dec.
Article En | MEDLINE | ID: mdl-37916896

Organic semiconductors are a promising material candidate for X-ray detection. However, the low atomic number (Z) of organic semiconductors leads to poor X-ray absorption thus restricting their performance. Herein, the authors propose a new strategy for achieving high-sensitivity performance for X-ray detectors based on organic semiconductors modified with high -Z heteroatoms. X-ray detectors are fabricated with p-type organic semiconductors containing selenium heteroatoms (poly(3-hexyl)selenophene (P3HSe)) in blends with an n-type fullerene derivative ([6,6]-Phenyl C71 butyric acid methyl ester (PC70 BM). When characterized under 70, 100, 150, and 220 kVp X-ray radiation, these heteroatom-containing detectors displayed a superior performance in terms of sensitivity up to 600 ± 11 nC Gy-1  cm-2 with respect to the bismuth oxide (Bi2 O3 ) nanoparticle (NP) sensitized organic detectors. Despite the lower Z of selenium compared to the NPs typically used, the authors identify a more efficient generation of electron-hole pairs, better charge transfer, and charge transport characteristics in heteroatom-incorporated detectors that result in this breakthrough detector performance. The authors also demonstrate flexible X-ray detectors that can be curved to a radius as low as 2 mm with low deviation in X-ray response under 100 repeated bending cycles while maintaining an industry-standard ultra-low dark current of 0.03 ± 0.01 pA mm-2 .

4.
ACS Appl Nano Mater ; 6(16): 14980-14990, 2023 Aug 25.
Article En | MEDLINE | ID: mdl-37649835

We report a facile, solvent-free surfactant-dependent mechanochemical synthesis of highly luminescent CsPbBr3 nanocrystals (NCs) and study their scintillation properties. A small amount of surfactant oleylamine (OAM) plays an important role in the two-step ball milling method to control the size and emission properties of the NCs. The solid-state synthesized perovskite NCs exhibit a high photoluminescence quantum yield (PLQY) of up to 88% with excellent stability. CsPbBr3 NCs capped with different amounts of surfactant were dispersed in toluene and mixed with polymethyl methacrylate (PMMA) polymer and cast into scintillator discs. With increasing concentration of OAM during synthesis, the PL yield of CsPbBr3/PMMA nanocomposite was increased, which is attributed to reduced NC aggregation and PL quenching. We also varied the perovskite loading concentration in the nanocomposite and studied the resulting emission properties. The most intense PL emission was observed from the 2% perovskite-loaded disc, while the 10% loaded disc exhibited the highest radioluminescence (RL) emission from 50 kV X-rays. The strong RL yield may be attributed to the deep penetration of X-rays into the composite, combined with the large interaction cross-section of the X-rays with the high-Z atoms within the NCs. The nanocomposite disc shows an intense RL emission peak centered at 536 nm and a fast RL decay time of 29.4 ns. Further, we have demonstrated the X-ray imaging performance of a 10% CsPbBr3 NC-loaded nanocomposite disc.

5.
Nanoscale ; 14(6): 2266-2276, 2022 Feb 10.
Article En | MEDLINE | ID: mdl-35080562

The fabrication of a flexible supercapacitor with state-of-the-art performance is described, based on a facile and low-cost fabrication method that encompasses aligned carbon nanotube arrays (ACNTA)-polyaniline/polydimethylsiloxane electrodes (ACNTA-PANI/PDMS). The ACNTA were partially embedded in PDMS to ensure excellent adhesion and integration whilst PANI was electrodeposited on its surface to improve energy storage properties. The supercapacitor structure and morphology were investigated by Raman spectroscopy and scanning electron microscopy (SEM), respectively. The energy storage properties of the electrodes were evaluated in two and three-electrode configurations. The maximum value of specific capacitance was 408 mF cm-2 (265 F g-1) at 1 mA cm-2, and a high energy density of 20 µW h cm-2 (25.5 W h kg-1) was achieved at a power density of 100 µW cm-2 (126.6 W kg-1) for a symmetric two-electrode device. The device showed a good capacitance retention of 76% after 5000 cycles and was able to maintain 80% of its electrochemical properties while being measured at different bending angles, demonstrating excellent mechanical agility performance under extreme conditions and some of the highest carbon-based energy storage properties.

6.
Adv Sci (Weinh) ; 9(2): e2101746, 2022 Jan.
Article En | MEDLINE | ID: mdl-34755497

Curved X-ray detectors have the potential to revolutionize diverse sectors due to benefits such as reduced image distortion and vignetting compared to their planar counterparts. While the use of inorganic semiconductors for curved detectors are restricted by their brittle nature, organic-inorganic hybrid semiconductors which incorporated bismuth oxide nanoparticles in an organic bulk heterojunction consisting of poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl C71 butyric acid methyl ester (PC70 BM) are considered to be more promising in this regard. However, the influence of the P3HT molecular weight on the mechanical stability of curved, thick X-ray detectors remains less well understood. Herein, high P3HT molecular weights (>40 kDa) are identified to allow increased intermolecular bonding and chain entanglements, resulting in X-ray detectors that can be curved to a radius as low as 1.3 mm with low deviation in X-ray response under 100 repeated bending cycles while maintaining an industry-standard dark current of <1 pA mm-2 and a sensitivity of ≈ 0.17 µC Gy-1 cm-2 . This study identifies a crucial missing link in the development of curved detectors, namely the importance of the molecular weight of the polymer semiconductors used.

7.
Phys Chem Chem Phys ; 23(16): 9733-9742, 2021 Apr 28.
Article En | MEDLINE | ID: mdl-33870400

Typically used semiconducting metal oxides (SMOs) consist of several varying factors that affect gas sensor response, including film thickness, grain size, and notably the grain-grain junctions within the active device volume, which complicates the analysis and optimisation of sensor response. In comparison, devices containing a single nanostructured element do not present grain-grain junctions, and therefore present an excellent platform to comprehend the correlation between nanostructure surface stoichiometry and sensor response to the depletion layer (Debye length, LD) variation after the analyte gas adsorption/chemisorption. In this work, nanofabricated devices containing SnO2 and Sn3O4 individual nanobelts of different thicknesses were used to estimate their LD after NO2 exposure. In the presence of 40 ppm of NO2 at 150 °C, LD of 12 nm and 8 nm were obtained for SnO2 and Sn3O4, respectively. These values were associated to the sensor signals measured using multiple nanobelts onto interdigitated electrodes, outlining that the higher sensor signal of the Sn4+ surface (up to 708 for 100 ppm NO2 at 150°) in comparison with the Sn2+ (up to 185) can be explained based on a less depleted initial state and a lower surface electron affinity caused by the Lewis acid/base interactions with oxygen species from the baseline gas. To support the proposed mechanisms, we investigated the gas sensor response of SnO2 nanobelts with a higher quantity of oxygen vacancies and correlated the results to the SnO system.

8.
ACS Appl Mater Interfaces ; 11(43): 39560-39573, 2019 Oct 30.
Article En | MEDLINE | ID: mdl-31552734

Recent interest in the fields of human motion monitoring, electronic skin, and human-machine interface technology demands strain sensors with high stretchability/compressibility (ε > 50%), high sensitivity (or gauge factor (GF > 100)), and long-lasting electromechanical compliance. However, current metal- and semiconductor-based strain sensors have very low (ε < 5%) stretchability or low sensitivity (GF < 2), typically sacrificing the stretchability for high sensitivity. Composite elastomer sensors are a solution where the challenge is to improve the sensitivity to GF > 100. We propose a simple, low-cost fabrication of mechanically compliant, physically robust metallic carbon nanotube (CNT)-polydimethylsiloxane (PDMS) strain sensors. The process allows the alignment of CNTs within the PDMS elastomer, permitting directional sensing. Aligning CNTs horizontally (HA-CNTs) on the substrate before embedding in the PDMS reduces the number of CNT junctions and introduces scale-like features on the CNT film perpendicular to the tensile strain direction, resulting in improved sensitivity compared to vertically-aligned CNT-(VA-CNT)-PDMS strain sensors under tension. The CNT alignment and the scale-like features modulate the electron conduction pathway, affecting the electrical sensitivity. Resulting GF values are 594 at 15% and 65 at 50% strains for HA-CNT-PDMS and 326 at 25% and 52 at 50% strains for VA-CNT-PDMS sensors. Under compression, VA-CNT-PDMS sensors show more sensitivity to small-scale deformation than HA-CNT-PDMS sensors due to the CNT orientation and the continuous morphology of the film, demonstrating that the sensing ability can be improved by aligning the CNTs in certain directions. Furthermore, mechanical robustness and electromechanical durability are tested for over 6000 cycles up to 50% tensile and compressive strains, with good frequency responses with negligible hysteresis. Finally, both types of sensors are shown to detect small-scale human motions, successfully distinguishing various human motions with reaction and recovery times of as low as 130 ms and 0.5 s, respectively.


Dimethylpolysiloxanes/chemistry , Membranes, Artificial , Nanotubes, Carbon/chemistry , Wearable Electronic Devices , Electric Conductivity , Humans
9.
Sensors (Basel) ; 18(10)2018 Sep 25.
Article En | MEDLINE | ID: mdl-30257516

In this study, individual nanofabricated SnO micro-disks, previously shown to exhibit exceptional sensitivity to NOx, are investigated to further our understanding of gas sensing mechanisms. The SnO disks presenting different areas and thickness were isolated and electrically connected to metallic electrodes aided by a Dual Beam Microscope (SEM/FIB). While single micro-disk devices were found to exhibit short response and recovery times and low power consumption, large interconnected arrays of micro-disks exhibit much higher sensitivity and selectivity. The source of these differences is discussed based on the gas/solid interaction and transport mechanisms, which showed that thickness plays a major role during the gas sensing of single-devices. The calculated Debye length of the SnO disk in presence of NO2 is reported for the first time.

...