Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Vet Sci ; 8: 653094, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34079832

RESUMEN

Parapoxviruses cause nodular lesions on the skin and mucosal membranes of pinnipeds and infections by these viruses have been documented worldwide. Seal parapoxvirus is currently classified as a tentative species of the Parapoxvirus genus. Tissue or swab samples were analyzed from 11 pinnipeds of different host species undergoing rehabilitation on the east and west coasts of the United States of America (USA) that were positive for parapoxvirus. The aim of the study was to compare parapoxvirus sequences of fragments of the B2L, DNA polymerase, GIF and viral interleukin-10 ortholog (vIL-10) genes and to examine the evolutionary relationship between viruses detected in different pinniped species and at different locations with other members of the Parapoxvirus genus, such as Orf virus (ORFV), Bovine papular stomatitis virus (BPSV) and Pseudocowpox virus (PCPV). The sequence analysis showed that the parapoxvirus sequences from the pinnipeds differed significantly from those found in terrestrial hosts and that they formed a separate cluster within the genus. Our results suggest that transmission of the same parapoxvirus strain is possible between different species, including between members of different families (phocids and otariids). Animals belonging to the same species but living in distant geographic locations presented genetically distant parapoxviruses. The findings of this study demonstrate that sealpox lesions in pinnipeds of different species are caused by viruses that belong to the Parapoxvirus genus but have significant genetic differences compared to the established virus species in terrestrial hosts, thus strongly supporting the classification of pinniped parapoxvirus as a new species of the genus.

2.
PLoS One ; 16(1): e0243570, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33406141

RESUMEN

Despite a long-documented history of severe harmful algal blooms (HABs) in New England coastal waters, corresponding HAB-associated marine mammal mortality events in this region are far less frequent or severe relative to other regions where HABs are common. This long-term survey of the HAB toxins saxitoxin (STX) and domoic acid (DA) demonstrates significant and widespread exposure of these toxins in New England marine mammals, across multiple geographic, temporal and taxonomic groups. Overall, 19% of the 458 animals tested positive for one or more toxins, with 15% and 7% testing positive for STX and DA, respectively. 74% of the 23 different species analyzed demonstrated evidence of toxin exposure. STX was most prevalent in Maine coastal waters, most frequently detected in common dolphins (Delphinus delphis), and most often detected during July and October. DA was most prevalent in animals sampled in offshore locations and in bycaught animals, and most frequently detected in mysticetes, with humpback whales (Megaptera novaeangliae) testing positive at the highest rates. Feces and urine appeared to be the sample matrices most useful for determining the presence of toxins in an exposed animal, with feces samples having the highest concentrations of STX or DA. No relationship was found between the bloom season of toxin-producing phytoplankton and toxin detection rates, however STX was more likely to be present in July and October. No relationship between marine mammal dietary preference and frequency of toxin detection was observed. These findings are an important part of a framework for assessing future marine mammal morbidity and mortality events, as well as monitoring ecosystem health using marine mammals as sentinel organisms for predicting coastal ocean changes.


Asunto(s)
Ecosistema , Exposición a Riesgos Ambientales/análisis , Floraciones de Algas Nocivas , Mamíferos/metabolismo , Animales , Heces/química , Geografía , Ácido Kaínico/análogos & derivados , Ácido Kaínico/análisis , New England , Saxitoxina/análisis , Factores de Tiempo
3.
Arch Environ Contam Toxicol ; 70(1): 121-32, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26142119

RESUMEN

In the last 30 years, several large-scale marine mammal mortality events have occurred, often in close association with highly polluted regions, leading to suspicions that contaminant-induced immunosuppression contributed to these epizootics. Some of these recent events also identified morbillivirus as a cause of or contributor to death. The role of contaminant exposures regarding morbillivirus mortality is still unclear. The results of this study aimed to address the potential for a mixture of polychlorinated biphenyls (PCBs), specifically Aroclor 1260, to alter harbor seal T-lymphocyte proliferation and to assess if exposure resulted in increased likelihood of phocine distemper virus (PDV USA 2006) to infect susceptible seals in an in vitro system. Exposure of peripheral blood mononuclear cells to Aroclor 1260 did not significantly alter lymphocyte proliferation (1, 5, 10, and 20 ppm). However, using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), lymphocytes exposed to 20 ppm Aroclor 1260 exhibited a significant decrease in PDV replication at day 7 and a significant increase at day 11 compared with unexposed control cells. Similar and significant differences were apparent on exposure to Aroclor 1260 in monocytes and supernatant. The results here indicate that in harbor seals, Aroclor 1260 exposure results in a decrease in virus early during infection and an increase during late infection. The consequences of this contaminant-induced infection pattern in a highly susceptible host could result in a greater potential for systemic infection with greater viral load, which could explain the correlative findings seen in wild populations exposed to a range of persistent contaminants that suffer from morbillivirus epizootics.


Asunto(s)
Arocloros/toxicidad , Virus del Moquillo Focino/fisiología , Replicación Viral/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Virus del Moquillo Focino/efectos de los fármacos , Técnicas In Vitro , Leucocitos Mononucleares , Phoca
4.
J Wildl Dis ; 51(2): 454-65, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25647591

RESUMEN

Worldwide, stranded marine mammals and the network personnel who respond to marine mammal mortality have provided much of the information regarding marine morbillivirus infections. An assay to determine the amount of virus present in tissue samples would be useful to assist in routine surveying of animal health and for monitoring large-scale die-off events. False negatives from poor-quality samples prevent determination of the true extent of infection, while only small amounts of tissue samples or archived RNA may be available at the time of collection for future retrospective analysis. We developed a one-step duplex real-time reverse transcriptase-quantitative-PCR assay (RT-qPCR) based on Taqman probe technology to quantify phocine distemper virus (PDV) isolated from an outbreak in harbor (Phoca vitulina concolor) and gray seals (Halichoerus grypus) along the northeast US coast in 2006. The glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) gene was selected to assess RNA quality. This duplex assay is specific for PDV and sensitive through a range of 10(0) to 10(9) copies ds-plasmid DNA. For the GAPDH target, the reaction in duplex amplified 10(0) to 10(9) copies of ds-plasmid DNA and was detectable in multiple seal species. This assay reduced the likelihood of false negative results due to degradation of tissues and well-to-well variability while providing sensitive and specific detection of PDV, which would be applicable in molecular epidemiologic studies and pathogen detection in field and laboratory investigations involving a variety of seal species.


Asunto(s)
Virus del Moquillo Focino/aislamiento & purificación , Moquillo/virología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Phocidae , Secuencia de Aminoácidos , Animales , Secuencia de Bases , ADN Viral/genética , Moquillo/diagnóstico , Datos de Secuencia Molecular , ARN Viral , Proteínas Virales/genética , Proteínas Virales/metabolismo
5.
Viruses ; 6(12): 5093-134, 2014 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-25533658

RESUMEN

Phocine distemper virus (PDV) was first recognized in 1988 following a massive epidemic in harbor and grey seals in north-western Europe. Since then, the epidemiology of infection in North Atlantic and Arctic pinnipeds has been investigated. In the western North Atlantic endemic infection in harp and grey seals predates the European epidemic, with relatively small, localized mortality events occurring primarily in harbor seals. By contrast, PDV seems not to have become established in European harbor seals following the 1988 epidemic and a second event of similar magnitude and extent occurred in 2002. PDV is a distinct species within the Morbillivirus genus with minor sequence variation between outbreaks over time. There is now mounting evidence of PDV-like viruses in the North Pacific/Western Arctic with serological and molecular evidence of infection in pinnipeds and sea otters. However, despite the absence of associated mortality in the region, there is concern that the virus may infect the large Pacific harbor seal and northern elephant seal populations or the endangered Hawaiian monk seals. Here, we review the current state of knowledge on PDV with particular focus on developments in diagnostics, pathogenesis, immune response, vaccine development, phylogenetics and modeling over the past 20 years.


Asunto(s)
Caniformia/virología , Virus del Moquillo Focino/fisiología , Moquillo/virología , Animales , Virus del Moquillo Focino/genética , Virus del Moquillo Focino/aislamiento & purificación , Nutrias/virología
6.
Vet Immunol Immunopathol ; 160(1-2): 90-6, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24845148

RESUMEN

The present study was conducted to assess and validate the cross-reactivity of commercially available multiplex human and canine cytokine kits coupled with the Bio-Plex 200 platform to measure cytokines in three pinniped species, harbor seals (Phoca vitulina), gray seals (Halichoerus grypus), and harp seals (Pagophilus groenlandicus). Cytokines are important small proteins that help direct a proper immune response to pathogens. The human cytokine kit allowed the detection of cytokines in the supernatant of mitogen-stimulated human peripheral blood mononuclear cells, but not in the three pinniped species studied, with the exception of TNFα and GM-CSF. In contrast, the canine cytokine kit appeared to cross-react with the majority of cytokines in the three pinniped species tested, including the pro-inflammatory cytokine TNFα, the Th1 cytokine INFγ, and the Th2 cytokine IL-10, an anti-inflammatory cytokine. In addition, the pro-inflammatory cytokines IL-6 and IL-8 were also measured in all pinniped species. Overall, the Bio-Plex 200 platform and the canine multiplex cytokine kit allowed the successful measurement of potentially clinically important pinniped cytokines. This additional tool may provide veterinarians with additional information to detect sub-clinical signs of inflammation or evidence for immune response, which may not be revealed during regular medical evaluation, e.g. physical examination, hematology, and serum chemistry.


Asunto(s)
Citocinas/sangre , Leucocitos Mononucleares/metabolismo , Phocidae/sangre , Animales , Técnicas de Laboratorio Clínico/métodos , Reacciones Cruzadas , Citocinas/metabolismo , Perros , Regulación de la Expresión Génica/inmunología , Humanos , Juego de Reactivos para Diagnóstico , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Especificidad de la Especie
7.
Ecohealth ; 10(2): 201-10, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23636484

RESUMEN

Studies on marine mammals can inform our understanding of the environmental health of the ocean. To evaluate the potential for changes in antimicrobial resistance, we analyzed a database spanning 2004-2010 that consisted of bacterial isolate identity and antimicrobial sensitivity for stranded pinnipeds in the Northwest Atlantic. Samples (n = 170) from treated animals yielded 310 bacterial isolates representing 24 taxa. We evaluated changes in antimicrobial class resistance from 2004 to 2010 for eight taxa. Escherichia coli displayed a significant increase in resistance to several antimicrobial classes. Other taxa displayed significant increases in resistance to aminoglycosides, and/or fluoroquinolones. In addition, we observed a significant increase in multiple antimicrobial resistance in cultures from untreated animals. These results demonstrate an increase in resistance among common bacterial pathogens of marine mammals over a time span of 6 years.


Asunto(s)
Caniformia/microbiología , Farmacorresistencia Bacteriana Múltiple , Enterobacteriaceae/efectos de los fármacos , Animales , Enterobacteriaceae/aislamiento & purificación , Noroeste de Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA