Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3215, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38615096

RESUMEN

Spatial compartmentalization is a key facet of protein quality control that serves to store disassembled or non-native proteins until triage to the refolding or degradation machinery can occur in a regulated manner. Yeast cells sequester nuclear proteins at intranuclear quality control bodies (INQ) in response to various stresses, although the regulation of this process remains poorly understood. Here we reveal the SUMO modification of the small heat shock protein Btn2 under DNA damage and place Btn2 SUMOylation in a pathway promoting protein clearance from INQ structures. Along with other chaperones, and degradation machinery, Btn2-SUMO promotes INQ clearance from cells recovering from genotoxic stress. These data link small heat shock protein post-translational modification to the regulation of protein sequestration in the yeast nucleus.


Asunto(s)
Proteínas de Choque Térmico Pequeñas , Cuerpos de Inclusión Intranucleares , Proteínas de Transporte Vesicular , Daño del ADN , Proteínas de Choque Térmico Pequeñas/genética , Proteínas de Choque Térmico Pequeñas/metabolismo , Cuerpos de Inclusión Intranucleares/genética , Cuerpos de Inclusión Intranucleares/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sumoilación , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
2.
J Biol Chem ; 298(8): 102199, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35760103

RESUMEN

The nucleus is a highly organized organelle with an intricate substructure of chromatin, RNAs, and proteins. This environment represents a challenge for maintaining protein quality control, since non-native proteins may interact inappropriately with other macromolecules and thus interfere with their function. Maintaining a healthy nuclear proteome becomes imperative during times of stress, such as upon DNA damage, heat shock, or starvation, when the proteome must be remodeled to effect cell survival. This is accomplished with the help of nuclear-specific chaperones, degradation pathways, and specialized structures known as protein quality control (PQC) sites that sequester proteins to help rapidly remodel the nuclear proteome. In this review, we focus on the current knowledge of PQC sites in Saccharomyces cerevisiae, particularly on a specialized nuclear PQC site called the intranuclear quality control site, a poorly understood nuclear inclusion that coordinates dynamic proteome triage decisions in yeast.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas Nucleares/metabolismo , Proteoma/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
J Cell Sci ; 133(23)2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33172985

RESUMEN

Cdc48 (known as VCP in mammals) is a highly conserved ATPase chaperone that plays an essential role in the assembly and disassembly of protein-DNA complexes and in degradation of misfolded proteins. We find that in Saccharomyces cerevisiae budding yeast, Cdc48 accumulates during cellular stress at intranuclear protein quality control sites (INQ). We show that Cdc48 function is required to suppress INQ formation under non-stress conditions and to promote recovery following genotoxic stress. Cdc48 physically associates with the INQ substrate and splicing factor Hsh155, and regulates its assembly with partner proteins. Accordingly, cdc48 mutants have defects in splicing and show spontaneous distribution of Hsh155 to INQ aggregates, where it is stabilized. Overall, this study shows that Cdc48 regulates deposition of proteins at INQ and suggests a previously unknown role for Cdc48 in the regulation or stabilization of splicing subcomplexes.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Ribonucleoproteína Nuclear Pequeña U2 , Proteínas de Saccharomyces cerevisiae , Proteína que Contiene Valosina , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Factores de Empalme de ARN , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína que Contiene Valosina/genética
5.
JAMA Neurol ; 77(5): 582-592, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32065623

RESUMEN

Importance: Many patients with generalized myasthenia gravis (gMG) have substantial clinical disability, persistent disease burden, and adverse effects attributable to chronic immunosuppression. Therefore, there is a significant need for targeted, well-tolerated therapies with the potential to improve disease control and enhance quality of life. Objective: To evaluate the clinical effects of zilucoplan, a subcutaneously (SC) self-administered macrocyclic peptide inhibitor of complement component 5, in a broad population of patients with moderate to severe gMG. Design, Setting, and Participants: This randomized, double-blind, placebo-controlled phase 2 clinical trial at 25 study sites across North America recruited participants between December 2017 and August 2018. Fifty-seven patients were screened, of whom 12 did not meet inclusion criteria and 1 was lost to follow-up after randomization but before receiving study drug, resulting in a total of 44 acetylcholine receptor autoantibody (AChR-Ab)-positive patients with gMG with baseline Quantitative Myasthenia Gravis (QMG) scores of at least 12, regardless of treatment history. Interventions: Patients were randomized 1:1:1 to a daily SC self-injection of placebo, 0.1-mg/kg zilucoplan, or 0.3-mg/kg zilucoplan for 12 weeks. Main Outcomes and Measures: The primary and key secondary end points were the change from baseline to week 12 in QMG and MG Activities of Daily Living scores, respectively. Significance testing was prespecified at a 1-sided α of .10. Safety and tolerability were also assessed. Results: The study of 44 patients was well balanced across the 3 treatment arms with respect to key demographic and disease-specific variables. The mean age of patients across all 3 treatment groups ranged from 45.5 to 54.6 years and most patients were white (average proportions across 3 treatment groups: 78.6%-86.7%). Clinically meaningful and statistically significant improvements in primary and key secondary efficacy end points were observed. Zilucoplan at a dose of 0.3 mg/kg SC daily resulted in a mean reduction from baseline of 6.0 points in the QMG score (placebo-corrected change, -2.8; P = .05) and 3.4 points in the MG Activities of Daily Living score (placebo-corrected change, -2.3; P = .04). Clinically meaningful and statistically significant improvements were also observed in other secondary end points, the MG Composite and MG Quality-of-Life scores. Outcomes for the 0.1-mg/kg SC daily dose were also statistically significant but slower in onset and less pronounced than with the 0.3-mg/kg dose. Rescue therapy (intravenous immunoglobulin or plasma exchange) was required in 3 of 15, 1 of 15, and 0 of 14 participants in the placebo, 0.1-mg/kg zilucoplan, and 0.3-mg/kg zilucoplan arms, respectively. Zilucoplan was observed to have a favorable safety and tolerability profile. Conclusions and Relevance: Zilucoplan yielded rapid, meaningful, and sustained improvements over 12 weeks in a broad population of patients with moderate to severe AChR-Ab-positive gMG. Near-complete complement inhibition appeared superior to submaximal inhibition. The observed safety and tolerability profile of zilucoplan was favorable. Trial Registration: ClinicalTrials.gov Identifier: NCT03315130.


Asunto(s)
Complemento C5/antagonistas & inhibidores , Inactivadores del Complemento/administración & dosificación , Miastenia Gravis/tratamiento farmacológico , Método Doble Ciego , Femenino , Humanos , Inyecciones Subcutáneas , Masculino , Persona de Mediana Edad , Autoadministración
6.
Drug Des Devel Ther ; 13: 1515-1525, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31118583

RESUMEN

Hereditary transthyretin amyloidosis is a fatal autosomal dominant disorder characterized by deposition of transthyretin amyloid into the peripheral nervous system, heart, kidney, and gastrointestinal tract. Previous treatments using liver transplantation and small molecule stabilizers were not effective in stopping disease progression. Inotersen, a 2'-O-methyoxyethyl-modified antisense oligonucleotide, which acts by reducing the production of transthyretin, was recently demonstrated to improve disease course and quality of life in early hereditary transthyretin amyloidosis polyneuropathy in a 15-month Phase III study.


Asunto(s)
Neuropatías Amiloides Familiares/tratamiento farmacológico , Oligodesoxirribonucleótidos Antisentido/uso terapéutico , Oligonucleótidos/uso terapéutico , Animales , Humanos
7.
Mol Biol Cell ; 30(2): 191-200, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30462576

RESUMEN

RNA processing mutants have been broadly implicated in genome stability, but mechanistic links are often unclear. Two predominant models have emerged: one involving changes in gene expression that perturb other genome maintenance factors and another in which genotoxic DNA:RNA hybrids, called R-loops, impair DNA replication. Here we characterize genome instability phenotypes in yeast splicing factor mutants and find that mitotic defects, and in some cases R-loop accumulation, are causes of genome instability. In both cases, alterations in gene expression, rather than direct cis effects, are likely to contribute to instability. Genome instability in splicing mutants is exacerbated by loss of the spindle-assembly checkpoint protein Mad1. Moreover, removal of the intron from the α-tubulin gene TUB1 restores genome integrity. Thus, differing penetrance and selective effects on the transcriptome can lead to a range of phenotypes in conditional mutants of the spliceosome, including multiple routes to genome instability.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Inestabilidad Genómica , Mutación/genética , Empalme del ARN/genética , Saccharomyces cerevisiae/genética , Cromosomas Fúngicos/genética , Daño del ADN , Epistasis Genética , Mitosis/genética , Fenotipo , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Empalmosomas/metabolismo , Tubulina (Proteína)/metabolismo
8.
Mol Cancer Res ; 16(8): 1215-1225, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29759988

RESUMEN

Telomerase is the ribonucleoprotein reverse transcriptase that catalyzes the synthesis of telomeres at the ends of linear chromosomes and contributes to proper telomere-loop (T-loop) formation. Formation of the T-loop, an obligate step before cell division can proceed, requires the generation of a 3'-overhang on the G-rich strand of telomeric DNA via telomerase or C-strand specific nucleases. Here, it is discovered that telomerase activity is critical for efficient cell-cycle progression using transient chemical inhibition by the telomerase inhibitor, imetelstat. Telomerase inhibition changed cell cycle kinetics and increased the proportion of cells in G2-phase, suggesting delayed clearance through this checkpoint. Investigating the possible contribution of unstructured telomere ends to these cell-cycle distribution changes, it was observed that imetelstat treatment induced γH2AX DNA damage foci in a subset of telomerase-positive cells but not telomerase-negative primary human fibroblasts. Chromatin-immunoprecipitation with γH2AX antibodies demonstrated imetelstat treatment-dependent enrichment of this DNA damage marker at telomeres. Notably, the effects of telomerase inhibition on cell cycle profile alterations were abrogated by pharmacological inhibition of the DNA-damage-repair transducer, ATM. Also, imetelstat potentiation of etoposide, a DNA-damaging drug that acts preferentially during S-G2 phases of the cell cycle, depends on functional ATM signaling. Thus, telomerase inhibition delays the removal of ATM-dependent DNA damage signals from telomeres in telomerase-positive cancer cells and interferes with cell cycle progression through G2Implications: This study demonstrates that telomerase activity directly facilitates the progression of the cell cycle through modulation of transient telomere dysfunction signals. Mol Cancer Res; 16(8); 1215-25. ©2018 AACR.


Asunto(s)
Daño del ADN/genética , Oligonucleótidos/uso terapéutico , Telomerasa/antagonistas & inhibidores , Ciclo Celular , Humanos , Cinética , Oligonucleótidos/farmacología , Transducción de Señal
9.
J Cell Biol ; 216(12): 4027-4040, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-28978642

RESUMEN

Upon genotoxic stress, dynamic relocalization events control DNA repair as well as alterations of the transcriptome and proteome, enabling stress recovery. How these events may influence one another is only partly known. Beginning with a cytological screen of genome stability proteins, we find that the splicing factor Hsh155 disassembles from its partners and localizes to both intranuclear and cytoplasmic protein quality control (PQC) aggregates under alkylation stress. Aggregate sequestration of Hsh155 occurs at nuclear and then cytoplasmic sites in a manner that is regulated by molecular chaperones and requires TORC1 activity signaling through the Sfp1 transcription factor. This dynamic behavior is associated with intron retention in ribosomal protein gene transcripts, a decrease in splicing efficiency, and more rapid recovery from stress. Collectively, our analyses suggest a model in which some proteins evicted from chromatin and undergoing transcriptional remodeling during stress are targeted to PQC sites to influence gene expression changes and facilitate stress recovery.


Asunto(s)
Daño del ADN , Reparación del ADN , Ribonucleoproteína Nuclear Pequeña U2/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Transcriptoma , Empalme Alternativo , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Cromatina/metabolismo , Cromatina/ultraestructura , Citoplasma/metabolismo , Citoplasma/ultraestructura , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Agregado de Proteínas , Ribonucleoproteína Nuclear Pequeña U2/química , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo
10.
Artículo en Inglés | MEDLINE | ID: mdl-28735739

RESUMEN

Bisulfite, in the form of sodium bisulfite or metabisulfite, is used commercially as a food preservative. Bisulfite is used in the laboratory as a single-stranded DNA mutagen in epigenomic analyses of DNA methylation. Recently it has also been used on whole yeast cells to induce mutations in exposed single-stranded regions in vivo. To understand the effects of bisulfite on live cells we conducted a genome-wide screen for bisulfite sensitive mutants in yeast. Screening the deletion mutant array, and collections of essential gene mutants we define a genetic network of bisulfite sensitive mutants. Validation of screen hits revealed hyper-sensitivity of transcription and RNA processing mutants, rather than DNA repair pathways and follow-up analyses support a role in perturbation of RNA transactions. We propose a model in which bisulfite-modified nucleotides may interfere with transcription or RNA metabolism when used in vivo.


Asunto(s)
Genoma Fúngico , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sulfitos/toxicidad , Transcripción Genética/efectos de los fármacos , Estudio de Asociación del Genoma Completo
11.
Nat Commun ; 8: 14432, 2017 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-28211448

RESUMEN

G-quadruplex DNAs form four-stranded helical structures and are proposed to play key roles in different cellular processes. Targeting G-quadruplex DNAs for cancer treatment is a very promising prospect. Here, we show that CX-5461 is a G-quadruplex stabilizer, with specific toxicity against BRCA deficiencies in cancer cells and polyclonal patient-derived xenograft models, including tumours resistant to PARP inhibition. Exposure to CX-5461, and its related drug CX-3543, blocks replication forks and induces ssDNA gaps or breaks. The BRCA and NHEJ pathways are required for the repair of CX-5461 and CX-3543-induced DNA damage and failure to do so leads to lethality. These data strengthen the concept of G4 targeting as a therapeutic approach, specifically for targeting HR and NHEJ deficient cancers and other tumours deficient for DNA damage repair. CX-5461 is now in advanced phase I clinical trial for patients with BRCA1/2 deficient tumours (Canadian trial, NCT02719977, opened May 2016).


Asunto(s)
Proteína BRCA1/deficiencia , Proteína BRCA2/deficiencia , Benzotiazoles/farmacología , Benzotiazoles/uso terapéutico , G-Cuádruplex , Naftiridinas/farmacología , Naftiridinas/uso terapéutico , Neoplasias/tratamiento farmacológico , Animales , Secuencia de Bases , Benzoxazinas/farmacología , Caenorhabditis elegans/efectos de los fármacos , Línea Celular Tumoral , Inestabilidad Cromosómica/genética , Daño del ADN , Reparación del ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , ADN Ribosómico/genética , Femenino , G-Cuádruplex/efectos de los fármacos , Genoma Humano , Genotipo , Recombinación Homóloga/efectos de los fármacos , Humanos , Ratones , Quinolonas/farmacología , Saccharomyces cerevisiae/metabolismo , Transcripción Genética/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Cell Stress ; 1(3): 134-135, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31225442

RESUMEN

To tolerate and recover from genotoxic stress cells must coordinate a range of stress response activities including cell cycle arrest, DNA repair, and remodeling of the transcriptome and proteome. The suppression of ribosome production is a key feature of many stress responses in yeast, and much is known about the dynamics of this process at the transcriptional level. In our recent study, (J Cell Biol doi: 10.1083/ jcb.201612018) we focus on the stress related dynamic behaviour of a splicing factor called Hsh155, which is a core component of the SF3B subcomplex of the U2 small nuclear ribonucleoprotein complex, homologous to human SF3B1. The disassembly from its complex and sequestration of Hsh155 into nuclear protein aggregates contributes to suppressing ribosome production post-transcriptionally by promoting intron retention in ribosomal protein gene transcripts. The relocalization of Hsh155 is facilitated by TORC1-driven transcriptional changes and molecular chaperones that recognize disassembled Hsh155, eventually aiding in efficient recovery from stress.

13.
Oncotarget ; 6(19): 17161-77, 2015 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-26220590

RESUMEN

Standard treatment for advanced non-small cell lung cancer (NSCLC) with no known driver mutation is platinum-based chemotherapy, which has a response rate of only 30-33%. Through an siRNA screen, 3'-phosphoadenosine 5'-phosphosulfate (PAPS) synthase 1 (PAPSS1), an enzyme that synthesizes the biologically active form of sulfate PAPS, was identified as a novel platinum-sensitizing target in NSCLC cells. PAPSS1 knockdown in combination with low-dose (IC10) cisplatin reduces clonogenicity of NSCLC cells by 98.7% (p < 0.001), increases DNA damage, and induces G1/S phase cell cycle arrest and apoptosis. PAPSS1 silencing also sensitized NSCLC cells to other DNA crosslinking agents, radiation, and topoisomerase I inhibitors, but not topoisomerase II inhibitors. Chemo-sensitization was not observed in normal epithelial cells. Knocking out the PAPSS1 homolog did not sensitize yeast to cisplatin, suggesting that sulfate bioavailability for amino acid synthesis is not the cause of sensitization to DNA damaging agents. Rather, sensitization may be due to sulfation reactions involved in blocking the action of DNA damaging agents, facilitating DNA repair, promoting cancer cell survival under therapeutic stress or reducing the bioavailability of DNA damaging agents. Our study demonstrates for the first time that PAPSS1 could be targeted to improve the activity of multiple anticancer agents used to treat NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Resistencia a Antineoplásicos/genética , Neoplasias Pulmonares/genética , Complejos Multienzimáticos/genética , Sulfato Adenililtransferasa/genética , Antineoplásicos/farmacología , Western Blotting , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Línea Celular Tumoral , Cisplatino/farmacología , Daño del ADN/efectos de los fármacos , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Humanos , Neoplasias Pulmonares/enzimología , Complejos Multienzimáticos/metabolismo , ARN Interferente Pequeño , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sulfato Adenililtransferasa/metabolismo , Transfección
14.
Cell Rep ; 7(2): 321-330, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24703848

RESUMEN

Chromatin reorganization and the incorporation of specific histone modifications during DNA damage response are essential steps for the successful repair of any DNA lesion. Here, we show that the histone-fold protein CHRAC14 plays an essential role in response to DNA damage in Drosophila. Chrac14 mutants are hypersensitive to genotoxic stress and do not activate the G2/M cell-cycle checkpoint after damage induction. Even though the DNA damage repair process is activated in the absence of CHRAC14, lesions are not repaired efficiently. In the absence of CHRAC14, the centromere-specific histone H3 variant CENP-A localizes to sites of DNA damage, causing ectopic kinetochore formation and genome instability. CENP-A and CHRAC14 are able to interact upon damage. Our data suggest that CHRAC14 modulates chromatin composition in response to DNA damage, which is required for efficient DNA damage repair in Drosophila.


Asunto(s)
Cromatina/metabolismo , Daño del ADN , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Nucleoproteínas/metabolismo , Animales , Autoantígenos/metabolismo , Proteína A Centromérica , Proteínas Cromosómicas no Histona/metabolismo , Reparación del ADN , Drosophila/genética , Proteínas de Drosophila/genética , Puntos de Control de la Fase G2 del Ciclo Celular , Inestabilidad Genómica , Cinetocoros/metabolismo , Nucleoproteínas/genética
15.
Genes Dev ; 25(7): 673-8, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21460035

RESUMEN

Heterochromatin integrity is crucial for genome stability and regulation of gene expression, but the factors involved in mammalian heterochromatin biology are only incompletely understood. Here we identify the oncoprotein DEK, an abundant nuclear protein with a previously enigmatic in vivo function, as a Suppressor of Variegation [Su(var)] that is crucial to global heterochromatin integrity. We show that DEK interacts directly with Heterochromatin Protein 1 α (HP1α) and markedly enhances its binding to trimethylated H3K9 (H3K9me3), which is key for maintaining heterochromatic regions. Loss of Dek in Drosophila leads to a Su(var) phenotype and global reduction in heterochromatin. Thus, these findings show that DEK is a key factor in maintaining the balance between heterochromatin and euchromatin in vivo.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Proteínas Oncogénicas/metabolismo , Animales , Ciclo Celular/efectos de los fármacos , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Inestabilidad Genómica/genética , Células HEK293 , Células HeLa , Inhibidores de Histona Desacetilasas/farmacología , Histonas/metabolismo , Humanos , Microscopía Electrónica de Transmisión , Proteínas Oncogénicas/genética , Proteínas de Unión a Poli-ADP-Ribosa , Unión Proteica , Receptores de la Familia Eph/genética , Receptores de la Familia Eph/metabolismo , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA