Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Dig Dis Sci ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001958

RESUMEN

Elemental diets have been employed for the management of various diseases for over 50 years, with several mechanisms mediating their beneficial effects. Yet, they are underutilized due to poor palatability, access, cost, and lack of awareness regarding their clinical efficacy. Therefore, in this review, we aimed to systematically search and review the literature to summarize the formulation variability, mechanisms of action, clinical applications, and tolerability of the elemental diets in gastrointestinal diseases. While large prospective trials are lacking, elemental diets appear to exhibit objective and subjective clinical benefit in several diseases, including eosinophilic esophagitis, eosinophilic gastroenteritis, inflammatory bowel diseases, small intestinal bacterial overgrowth, intestinal methanogen overgrowth, chemoradiotherapy-associated mucositis, and celiac disease. Although some data support the long-term use of elemental diets as an add-on supplement for chronic pancreatitis and Crohn's disease, most of the literature on exclusive elemental diets focuses on inducing remission. Therefore, subsequent treatment strategies for maintaining remission need to be adopted in chronic/relapsing diseases. Several mechanistic pathways were identified to mediate the effects of elemental diets, including food additive and allergen-free content, high passive absorption rate, and anti-inflammatory properties. High rates of intolerance up to 40% are seen in the trials where exclusive elemental diets were administered orally due to poor organoleptic acceptability; however, when tolerated, adverse events were rare. Other limitations of elemental diets are cost, access, and lifestyle/social restrictions. Moreover, judicious use is advised in presence of a concomitant restrictive food intake disorders. Elemental diets offer a potentially highly efficacious dietary intervention with minor side effects. Palatability, cost, access, and social restrictions are common barriers of use. Prospective clinical trials are needed to elucidate the role of elemental formulas in the management of individual diseases.

2.
Photodiagnosis Photodyn Ther ; 47: 104097, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677499

RESUMEN

Under controlled settings, narrow-band ultraviolet A (UVA) exposure exerts antiviral effects both in vivo and in vitro. The effect is thought to be mediated via direct effect on viral particles and indirectly, by modulation of metabolic pathways of host cells. We aimed to explore the extracellular and intracellular antiviral effects of UVA exposure against Alpha, Beta, and Delta variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS: Vero E6 kidney normal epithelial cells and human tracheal epithelial cells were infected with Alpha, Beta, and Delta variants in a BSL-3 laboratory. To assess extracellular effects, SARS-CoV-2 variants were directly exposed to a single dose of UVA prior to infection of the host cells (Vero E6 kidney normal epithelial cells and human tracheal epithelial cells) The intracellular effects of UVA were assessed by first infecting the cells with SARS-CoV-2 variants followed by UVA treatment of infected cell monolayers. Efficacy was quantified by both plaque reduction assay and quantitative real-time polymerase chain reaction. Additionally, transcriptomic analysis was performed on exposed Vero E6 cells to assess differentially expressed genes and canonical pathways as compared to controls. RESULTS: SARS-CoV-2 Alpha, Beta and Delta variants are susceptible to UVA exposure prior to infection of Vero E6 cells. Importantly, the UVA-driven reduction in Delta variant load could be reproduced in human primary tracheal cells. Beta and Delta variants load also significantly decreased during Vero E6 cells intracellular experiments. UVA-driven reductions in viral loads ameliorate several host metabolic pathways, including canonical pathways related to viral infection and interferon signaling. CONCLUSION: Narrow-band UVA exhibits both extracellular effects on SARS-CoV-2 viral particles and intracellular effects on infected cells with SARS-CoV-2. Efficacy appears to be variant independent.


Asunto(s)
SARS-CoV-2 , Chlorocebus aethiops , Animales , Células Vero , Humanos , Rayos Ultravioleta , COVID-19 , Células Epiteliales/virología
3.
Am J Gastroenterol ; 119(6): 1141-1153, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38578969

RESUMEN

INTRODUCTION: Gut microbiome changes are linked to obesity, but findings are based on stool data. In this article, we analyzed the duodenal microbiome and serum biomarkers in subjects with normal weight, overweight, and obesity. METHODS: Duodenal aspirates and serum samples were obtained from subjects undergoing standard-of-care esophagogastroduodenoscopy without colon preparation. Aspirate DNAs were analyzed by 16S rRNA and shotgun sequencing. Predicted microbial metabolic functions and serum levels of metabolic and inflammatory biomarkers were also assessed. RESULTS: Subjects with normal weight (N = 105), overweight (N = 67), and obesity (N = 42) were identified. Overweight-specific duodenal microbial features include lower relative abundance (RA) of Bifidobacterium species and Escherichia coli strain K-12 and higher Lactobacillus intestinalis , L. johnsonii , and Prevotella loescheii RA. Obesity-specific features include higher Lactobacillus gasseri RA and lower L. reuteri (subspecies rodentium ), Alloprevotella rava , and Leptotrichia spp RA. Escalation features (progressive changes from normal weight through obesity) include decreasing Bacteroides pyogenes , Staphylococcus hominis , and unknown Faecalibacterium species RA, increasing RA of unknown Lactobacillus and Mycobacterium species, and decreasing microbial potential for biogenic amines metabolism. De-escalation features (direction of change altered in normal to overweight and overweight to obesity) include Lactobacillus acidophilus , L. hominis , L. iners , and Bifidobacterium dentium . An unknown Lactobacillus species is associated with type IIa dyslipidemia and overweight, whereas Alloprevotella rava is associated with type IIb and IV dyslipidemias. DISCUSSION: Direct analysis of the duodenal microbiome has identified key genera associated with overweight and obesity, including some previously identified in stool, e.g., Bifidobacterium and Lactobacillus . Specific species and strains exhibit differing associations with overweight and obesity, including escalation and de-escalation features that may represent targets for future study and therapeutics.


Asunto(s)
Microbioma Gastrointestinal , Obesidad , Sobrepeso , Humanos , Obesidad/microbiología , Femenino , Masculino , Sobrepeso/microbiología , Persona de Mediana Edad , Adulto , Duodeno/microbiología , ARN Ribosómico 16S/genética , Biomarcadores/sangre , Lactobacillus/aislamiento & purificación , Bifidobacterium/aislamiento & purificación , Anciano
4.
Clin Gastroenterol Hepatol ; 22(2): 259-270, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37315761

RESUMEN

BACKGROUND& AIMS: Despite accelerated research in small intestinal bacterial overgrowth (SIBO), questions remain regarding optimal diagnostic approaches and definitions. Here, we aim to define SIBO using small bowel culture and sequencing, identifying specific contributory microbes, in the context of gastrointestinal symptoms. METHODS: Subjects undergoing esophagogastroduodenoscopy (without colonoscopy) were recruited and completed symptom severity questionnaires. Duodenal aspirates were plated on MacConkey and blood agar. Aspirate DNA was analyzed by 16S ribosomal RNA and shotgun sequencing. Microbial network connectivity for different SIBO thresholds and predicted microbial metabolic functions were also assessed. RESULTS: A total of 385 subjects with <103 colony forming units (CFU)/mL on MacConkey agar and 98 subjects with ≥103 CFU/mL, including ≥103 to <105 CFU/mL (N = 66) and ≥105 CFU/mL (N = 32), were identified. Duodenal microbial α-diversity progressively decreased, and relative abundance of Escherichia/Shigella and Klebsiella increased, in subjects with ≥103 to <105 CFU/mL and ≥105 CFU/mL. Microbial network connectivity also progressively decreased in these subjects, driven by the increased relative abundance of Escherichia (P < .0001) and Klebsiella (P = .0018). Microbial metabolic pathways for carbohydrate fermentation, hydrogen production, and hydrogen sulfide production were enhanced in subjects with ≥103 CFU/mL and correlated with symptoms. Shotgun sequencing (N = 38) identified 2 main Escherichia coli strains and 2 Klebsiella species representing 40.24% of all duodenal bacteria in subjects with ≥103 CFU/mL. CONCLUSIONS: Our findings confirm ≥103 CFU/mL is the optimal SIBO threshold, associated with gastrointestinal symptoms, significantly decreased microbial diversity, and network disruption. Microbial hydrogen- and hydrogen sulfide-related pathways were enhanced in SIBO subjects, supporting past studies. Remarkably few specific E coli and Klebsiella strains/species appear to dominate the microbiome in SIBO, and correlate with abdominal pain, diarrhea, and bloating severities.


Asunto(s)
Enfermedades Gastrointestinales , Sulfuro de Hidrógeno , Humanos , Agar , Escherichia coli , Secuenciación de Nucleótidos de Alto Rendimiento , Hidrógeno , Pruebas Respiratorias
5.
Dig Dis Sci ; 69(2): 426-436, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38060167

RESUMEN

BACKGROUND: We recently demonstrated that diarrhea-predominant irritable bowel syndrome (IBS-D) subjects have higher relative abundance (RA) of hydrogen sulfide (H2S)-producing Fusobacterium and Desulfovibrio species, and constipation-predominant IBS (IBS-C) subjects have higher RA of methanogen Methanobrevibacter smithii. AIMS: In this study, we investigate the effects of increased methanogens or H2S producers on stool phenotypes in rat models. METHODS: Adult Sprague-Dawley rats were fed high-fat diet (HFD) for 60 days to increase M. smithii levels, then gavaged for 10 days with water (controls) or methanogenesis inhibitors. To increase H2S producers, rats were gavaged with F. varium or D. piger. Stool consistency (stool wet weight (SWW)) and gas production were measured. 16S rRNA gene sequencing was performed on stool samples. RESULTS: In HFD diet-fed rats (N = 30), stool M. smithii levels were increased (P < 0.001) after 52 days, correlating with significantly decreased SWW (P < 0.0001) at 59 days (R = - 0.38, P = 0.037). Small bowel M. smithii levels decreased significantly in lovastatin lactone-treated rats (P < 0.0006), and SWW increased (normalized) in lovastatin hydroxyacid-treated rats (P = 0.0246), vs. controls (N = 10/group). SWW increased significantly in D. piger-gavaged rats (N = 16) on day 10 (P < 0.0001), and in F. varium-gavaged rats (N = 16) at all timepoints, vs. controls, with increased stool H2S production. 16S sequencing revealed stool microbiota alterations in rats gavaged with H2S producers, with higher relative abundance (RA) of other H2S producers, particularly Lachnospiraceae and Bilophila in F. varium-gavaged rats, and Sutterella in D. piger-gavaged rats. CONCLUSIONS: These findings suggest that increased M. smithii levels result in a constipation-like phenotype in a rat model that is partly reversible with methanogenesis inhibitors, whereas gavage with H2S producers D. piger or F. varium results in increased colonization with other H2S producers and diarrhea-like phenotypes. This supports roles for the increased RA of methanogens and H2S producers identified in IBS-C and IBS-D subjects, respectively, in contributing to stool phenotypes.


Asunto(s)
Sulfuro de Hidrógeno , Síndrome del Colon Irritable , Humanos , Adulto , Ratas , Animales , Síndrome del Colon Irritable/microbiología , Metano , ARN Ribosómico 16S/genética , Ratas Sprague-Dawley , Estreñimiento/etiología , Estreñimiento/microbiología , Diarrea/microbiología , Modelos Animales , Lovastatina
6.
Gut Microbes ; 16(1): 2293170, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38108386

RESUMEN

Diarrhea-predominant irritable bowel syndrome (IBS-D), associated with increased intestinal permeability, inflammation, and small intestinal bacterial overgrowth, can be triggered by acute gastroenteritis. Cytolethal distending toxin B (CdtB) is produced by gastroenteritis-causing pathogens and may underlie IBS-D development, through molecular mimicry with vinculin. Here, we examine the effects of exposure to CdtB alone on gut microbiome composition, host intestinal gene expression, and IBS-D-like phenotypes in a rat model. CdtB-inoculated rats exhibited increased anti-CdtB levels, which correlated with increased stool wet weights, pro-inflammatory cytokines (TNFα, IL2) and predicted microbial metabolic pathways including inflammatory responses, TNF responses, and diarrhea. Three distinct ileal microbiome profiles (microtypes) were identified in CdtB-inoculated rats. The first microtype (most like controls) had altered relative abundance (RA) of genera Bifidobacterium, Lactococcus, and Rothia. The second had lower microbial diversity, higher Escherichia-Shigella RA, higher absolute E. coli abundance, and altered host ileal tissue expression of immune-response and TNF-response genes compared to controls. The third microtype had higher microbial diversity, higher RA of hydrogen sulfide (H2S)-producer Desulfovibrio, and increased expression of H2S-associated pain/serotonin response genes. All CdtB-inoculated rats exhibited decreased ileal expression of cell junction component mRNAs, including vinculin-associated proteins. Significantly, cluster-specific microRNA-mRNA interactions controlling intestinal permeability, visceral hypersensitivity/pain, and gastrointestinal motility genes, including several previously associated with IBS were seen. These findings demonstrate that exposure to CdtB toxin alone results in IBS-like phenotypes including inflammation and diarrhea-like stool, decreased expression of intestinal barrier components, and altered ileal microtypes that influenced changes in microRNA-modulated gene expression and predicted metabolic pathways consistent with specific IBS-D symptoms.


Asunto(s)
Gastroenteritis , Microbioma Gastrointestinal , Síndrome del Colon Irritable , Ratas , Animales , Síndrome del Colon Irritable/genética , Roedores , Vinculina , Escherichia coli , Diarrea , Inflamación , Expresión Génica , Dolor
7.
iScience ; 26(12): 108530, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38125028

RESUMEN

Studies using stool samples suggest that non-sugar sweetener (NSS) consumption affects gut microbiome composition. However, stool does not represent the entire gut. We analyzed the duodenal luminal microbiome in subjects consuming non-aspartame non-sugar sweeteners (NANS, N = 35), aspartame only (ASP, N = 9), and controls (CON, N = 55) and the stool microbiome in a subset (N = 40). Duodenal alpha diversity was decreased in NANS vs. CON. Duodenal relative abundance (RA) of Escherichia, Klebsiella, and Salmonella (all phylum Proteobacteria) was lower in both NANS and ASP vs. CON, whereas stool RA of Escherichia, Klebsiella, and Salmonella was increased in both NANS and ASP vs. CON. Predicted duodenal microbial metabolic pathways altered in NANS vs. CON included polysaccharides biosynthesis and D-galactose degradation, whereas cylindrospermopsin biosynthesis was significantly enriched in ASP vs. CON. These findings suggest that consuming non-sugar sweeteners may significantly alter microbiome composition and function in the metabolically active small bowel, with different alterations seen in stool.

8.
Dig Dis Sci ; 68(10): 3902-3912, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37578565

RESUMEN

BACKGROUND: The coronavirus disease 2019 (COVID-19) global pandemic necessitated many severe lifestyle changes, including lockdowns, social distancing, altered food consumption and exercise patterns, and extensive hygiene practices. These extensive changes may have affected the human gut microbiome, which is highly influenced by lifestyle. AIMS: To examine the potential effects of pandemic-related lifestyle changes on the metabolically relevant small bowel microbiome. METHODS: Adult subjects presenting for upper endoscopy without colonoscopy were identified and divided into two matched groups: pre-pandemic (February 2019-March 2020) and intra-pandemic (April 2021-September 2021, all COVID-19 negative). Duodenal aspirates and blood samples were collected. Duodenal microbiomes were analyzed by 16S rRNA sequencing. Serum cytokine levels were analyzed by Luminex FlexMap3D. RESULTS: Fifty-six pre-pandemic and 38 COVID-negative intra-pandemic subjects were included. There were no significant changes in duodenal microbial alpha diversity in the intra-pandemic vs. pre-pandemic group, but beta diversity was significantly different. The relative abundance (RA) of phylum Deinococcus-Thermus and family Thermaceae, which are resistant extremophiles, was significantly higher in the intra-pandemic vs. pre-pandemic group. The RA of several Gram-negative taxa including Bacteroidaceae (phylum Bacteroidetes) and the Proteobacteria families Enterobacteriaceae and Pseudomonadaceae, and the RA of potential disruptor genera Escherichia-Shigella and Rothia, were significantly lower in the intra-pandemic vs. pre-pandemic group. Circulating levels of interleukin-18 were also lower in the intra-pandemic group. CONCLUSIONS: These findings suggest the small bowel microbiome underwent significant changes during the pandemic, in COVID-19-negative individuals. Given the key roles of the small bowel microbiota in host physiology, this may have implications for human health.


Asunto(s)
COVID-19 , Pandemias , Adulto , Humanos , ARN Ribosómico 16S/genética , COVID-19/epidemiología , Control de Enfermedades Transmisibles , Intestino Delgado/microbiología , Bacterias/genética
9.
Microorganisms ; 11(3)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36985296

RESUMEN

INTRODUCTION: Non-alcoholic fatty liver disease (NAFLD) is a multifactorial, wide-spectrum liver disorder. Small intestinal bacterial overgrowth (SIBO) is characterized by an increase in the number and/or type of colonic bacteria in the upper gastrointestinal tract. SIBO, through energy salvage and induction of inflammation, may be a pathophysiological factor for NAFLD development and progression. AIM/METHODS: Consecutive patients with histological, biochemical, or radiological diagnosis of any stage of NAFLD (non-alcoholic fatty liver [NAFL], non-alcoholic steatohepatitis [NASH], cirrhosis) underwent upper gastrointestinal endoscopy. Duodenal fluid (2cc) was aspirated from the 3rd-4th part of duodenum into sterile containers. SIBO was defined as ≥103 aerobic colony-forming units (CFU)/mL of duodenal aspirate and/or the presence of colonic-type bacteria. Patients without any liver disease undergoing gastroscopy due to gastroesophageal reflux disease (GERD) comprised the healthy control (HC) group. Concentrations (pg/mL) of tumor necrosis factor alpha (TNFα), interleukin (IL)-1ß, and IL-6 were also measured in the duodenal fluid. The primary endpoint was to evaluate the prevalence of SIBO in NAFLD patients, while the comparison of SIBO prevalence among NAFLD patients and healthy controls was a secondary endpoint. RESULTS: We enrolled 125 patients (51 NAFL, 27 NASH, 17 cirrhosis, and 30 HC) aged 54 ± 11.9 years and with a weight of 88.3 ± 19.6 kg (NAFLD vs. HC 90.7 ± 19.1 vs. 80.8 ± 19.6 kg, p = 0.02). Overall, SIBO was diagnosed in 23/125 (18.4%) patients, with Gram-negative bacteria being the predominant species (19/23; 82.6%). SIBO prevalence was higher in the NAFLD cohort compared to HC (22/95; 23.2% vs. 1/30; 3.3%, p = 0.014). Patients with NASH had higher SIBO prevalence (6/27; 22.2%) compared to NAFL individuals (8/51; 15.7%), but this difference did not reach statistical significance (p = 0.11). Patients with NASH-associated cirrhosis had a higher SIBO prevalence compared to patients with NAFL (8/17; 47.1% vs. 8/51; 15.7%, p = 0.02), while SIBO prevalence between patients with NASH-associated cirrhosis and NASH was not statistically different (8/17; 47.1% vs. 6/27; 22.2%, p = 0.11). Mean concentration of TNF-α, IL-1ß, and IL-6 did not differ among the different groups. CONCLUSION: The prevalence of SIBO is significantly higher in a cohort of patients with NAFLD compared to healthy controls. Moreover, SIBO is more prevalent in patients with NASH-associated cirrhosis compared to patients with NAFL.

10.
Microorganisms ; 11(2)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36838317

RESUMEN

Functional dyspepsia (FD) is a common disorder in everyday clinical practice identified nowadays as a multi-factorial, difficult to treat condition with a significant burden on patients' quality of life (QoL) and healthcare systems worldwide. Despite its high prevalence in the general population, the precise etiology of the disorder remains elusive, with its pathophysiological spectrum evolving over time, including variable potential mechanisms, i.e., impaired gastric accommodation, gastric motor disorders, hypersensitivity to gastric distention, disorders of the brain-gut axis, as well as less evident ones, i.e., altered duodenal microbiota composition and genetic susceptibility. In light of these implications, a definitive, universal treatment that could be beneficial for all FD patients is not available yet. Recently, probiotics have been suggested to be an effective therapeutic option that could alleviate gastrointestinal symptoms in patients with Irritable Bowel Syndrome (IBS), potentially due to anti-inflammatory properties or by modulating the complex bidirectional interactions between gastrointestinal microbiota and host crosstalk; however, their impact on the multiple aspects of FD remains ambiguous. In this review, we aim to summarize all currently available evidence for the efficacy of probiotics as a novel therapeutic approach for FD.

11.
J Endocr Soc ; 7(2): bvac184, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36578879

RESUMEN

Diabetes represents one of the most significant, and rapidly escalating, global healthcare crises we face today. Diabetes already affects one-tenth of the world's adults-more than 537 million people, numbers that have tripled since 2000 and are estimated to reach 643 million by 2030. Type 2 diabetes (T2D), the most prevalent form, is a complex disease with numerous contributing factors, including genetics, epigenetics, diet, lifestyle, medication use, and socioeconomic factors. In addition, the gut microbiome has emerged as a significant potential contributing factor in T2D development and progression. Gut microbes and their metabolites strongly influence host metabolism and immune function, and are now known to contribute to vitamin biosynthesis, gut hormone production, satiety, maintenance of gut barrier integrity, and protection against pathogens, as well as digestion and nutrient absorption. In turn, gut microbes are influenced by diet and lifestyle factors such as alcohol and medication use, including antibiotic use and the consumption of probiotics and prebiotics. Here we review current evidence regarding changes in microbial populations in T2D and the mechanisms by which gut microbes influence glucose metabolism and insulin resistance, including inflammation, gut permeability, and bile acid production. We also explore the interrelationships between gut microbes and different T2D medications and other interventions, including prebiotics, probiotics, and bariatric surgery. Lastly, we explore the particular role of the small bowel in digestion and metabolism and the importance of studying small bowel microbes directly in our search to find metabolically relevant biomarkers and therapeutic targets for T2D.

12.
Am J Gastroenterol ; 117(12): 2055-2066, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36114762

RESUMEN

INTRODUCTION: Irritable bowel syndrome (IBS) includes diarrhea-predominant (IBS-D) and constipation-predominant (IBS-C) subtypes. We combined breath testing and stool microbiome sequencing to identify potential microbial drivers of IBS subtypes. METHODS: IBS-C and IBS-D subjects from 2 randomized controlled trials (NCT03763175 and NCT04557215) were included. Baseline breath carbon dioxide, hydrogen (H 2 ), methane (CH 4 ), and hydrogen sulfide (H 2 S) levels were measured by gas chromatography, and baseline stool microbiome composition was analyzed by 16S rRNA sequencing. Microbial metabolic pathways were analyzed using Kyoto Encyclopedia of Genes and Genomes collection databases. RESULTS: IBS-C subjects had higher breath CH 4 that correlated with higher gut microbial diversity and higher relative abundance (RA) of stool methanogens, predominantly Methanobrevibacter , as well as higher absolute abundance of Methanobrevibacter smithii in stool. IBS-D subjects had higher breath H 2 that correlated with lower microbial diversity and higher breath H 2 S that correlated with higher RA of H 2 S-producing bacteria, including Fusobacterium and Desulfovibrio spp. The predominant H 2 producers were different in these distinct microtypes, with higher RA of Ruminococcaceae and Christensenellaceae in IBS-C/CH 4 + (which correlated with Methanobacteriaceae RA) and higher Enterobacteriaceae RA in IBS-D. Finally, microbial metabolic pathway analysis revealed enrichment of Kyoto Encyclopedia of Genes and Genomes modules associated with methanogenesis and biosynthesis of methanogenesis cofactor F420 in IBS-C/CH 4 + subjects, whereas modules associated with H 2 S production, including sulfate reduction pathways, were enriched in IBS-D. DISCUSSION: Our findings identify distinct gut microtypes linked to breath gas patterns in IBS-C and IBS-D subjects, driven by methanogens such as M. smithii and H 2 S producers such as Fusobacterium and Desulfovibrio spp, respectively.


Asunto(s)
Microbioma Gastrointestinal , Sulfuro de Hidrógeno , Síndrome del Colon Irritable , Humanos , Síndrome del Colon Irritable/complicaciones , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S , Bacterias
13.
Front Microbiol ; 13: 897283, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35756061

RESUMEN

Gut microbiome composition is different in males and females, but sex is rarely considered when prescribing antibiotics, and sex-based differences in gut microbiome recovery following antibiotic treatment are poorly understood. Here, we compared the effects of broad-spectrum antibiotics on both the stool and small bowel microbiomes in male and female rats. Adult male and female Sprague Dawley rats were exposed to a multi-drug antibiotic cocktail for 8 days, or remained unexposed as controls. Following cessation of antibiotics, rats were monitored for an additional 13-day recovery period prior to euthanasia. Baseline stool microbiome composition was similar in males and females. By antibiotic exposure day 8 (AbxD8), exposed male rats exhibited greater loss of stool microbial diversity compared to exposed females, and the relative abundance (RA) of numerous taxa were significantly different in exposed males vs. exposed females. Specifically, RA of phylum Proteobacteria and genera Lactobacillus, Sutterella, Akkermansia, and Serratia were higher in exposed males vs. exposed females, whereas RA of phyla Firmicutes and Actinobacteria and genera Turicibacter and Enterococcus were lower. By 13 days post antibiotics cessation (PAbxD13), the stool RA of these and other taxa remained significantly different from baseline, and also remained significantly different between exposed males and exposed females. RA of phyla Firmicutes and Actinobacteria and genus Enterococcus remained lower in exposed males vs. exposed females, and genus Sutterella remained higher. However, RA of phylum Proteobacteria and genus Akkermansia were now also lower in exposed males vs. females, whereas RA of phylum Bacteroidetes and genus Turicibacter were now higher in exposed males. Further, the small bowel microbiome of exposed rats on PAbxD13 was also significantly different from unexposed controls, with higher RA of Firmicutes, Turicibacter and Parabacteroides in exposed males vs. females, and lower RA of Bacteroidetes, Proteobacteria, Actinobacteria, Oscillospira, Sutterella, and Akkermansia in exposed males vs. females. These findings indicate that broad-spectrum antibiotics have significant and sex-specific effects on gut microbial populations in both stool and the small bowel, and that the recovery of gut microbial populations following exposure to broad-spectrum antibiotics also differs between sexes. These findings may have clinical implications for the way antibiotics are prescribed.

14.
Sci Rep ; 12(1): 6231, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35422064

RESUMEN

Tobacco use is the leading preventable cause of cancer, and affects the respiratory, oral, fecal, and duodenal mucosa-associated microbiota. However, the effects of smoking on the duodenal luminal microbiome have not been studied directly. We aimed to compare the duodenal luminal microbiome in never-smokers, current smokers, and ex-smokers who quit ≥ 10 years ago. In a cross-sectional study, current smokers (CS, n = 24) were identified and matched to never-smokers (NS, n = 27) and ex-smokers (XS, n = 27) by age (± 5 years), body mass index (BMI, ± 3 kg/m2), and sex. Current antibiotic users were excluded. The duodenal luminal microbiome was analysed in 1 aspirate sample per subject by 16S rRNA gene sequencing. Relative abundances (RA) of families associated with increased duodenal microbial diversity, Prevotellaceae, Neisseriaceae, and Porphyromonadaceae, were significantly lower in CS vs. NS. This was driven by lower RA of unknown Prevotella and Porphyromonas species, and Neisseria subflava and N. cinerea, in CS. In contrast, RA of Enterobacteriaceae and Lactobacillaceae (associated with decreased diversity), were significantly higher in CS, due to higher RA of Escherichia-Shigella, Klebsiella and Lactobacillus species. Many of these changes were absent or less pronounced in XS, who exhibited a duodenal luminal microbiome more similar to NS. RA of taxa previously found to be increased in the oral and respiratory microbiota of smokers were also higher in the duodenal luminal microbiome, including Bulledia extructa and an unknown Filifactor species. In conclusion, smoking is associated with an altered duodenal luminal microbiome. However, ex-smokers have a duodenal luminal microbiome that is similar to never-smokers.


Asunto(s)
Microbiota , Fumar , Estudios Transversales , Humanos , ARN Ribosómico 16S/genética , Fumar/efectos adversos , Fumar Tabaco
15.
Am J Gastroenterol ; 117(7): 1118-1124, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35288511

RESUMEN

INTRODUCTION: Stool form assessment relies on subjective patient reports using the Bristol Stool Scale (BSS). In a novel smartphone application (app), trained artificial intelligence (AI) characterizes digital images of users' stool. In this study, we evaluate this AI for accuracy in assessing stool characteristics. METHODS: Subjects with diarrhea-predominant irritable bowel syndrome image-captured every stool for 2 weeks using the app, which assessed images for 5 visual characteristics (BSS, consistency, fragmentation, edge fuzziness, and volume). In the validation phase, using 2 expert gastroenterologists as a gold standard, sensitivity, specificity, accuracy, and diagnostic odds ratios of subject-reported vs AI-graded BSS scores were compared. In the implementation phase, agreements between AI-graded and subject-reported daily average BSS scores were determined, and subject BSS and AI stool characteristics scores were correlated with diarrhea-predominant irritable bowel syndrome symptom severity scores. RESULTS: In the validation phase (n = 14), there was good agreement between the 2 experts and AI characterizations for BSS (intraclass correlation coefficients [ICC] = 0.782-0.852), stool consistency (ICC = 0.873-0.890), edge fuzziness (ICC = 0.836-0.839), fragmentation (ICC = 0.837-0.863), and volume (ICC = 0.725-0.851). AI outperformed subjects' self-reports in categorizing daily average BSS scores as constipation, normal, or diarrhea. In the implementation phase (n = 25), the agreement between AI and self-reported BSS scores was moderate (ICC = 0.61). AI stool characterization also correlated better than subject reports with diarrhea severity scores. DISCUSSION: A novel smartphone application can determine BSS and other visual stool characteristics with high accuracy compared with the 2 expert gastroenterologists. Moreover, trained AI was superior to subject self-reporting of BSS. AI assessments could provide more objective outcome measures for stool characterization in gastroenterology.


Asunto(s)
Síndrome del Colon Irritable , Aplicaciones Móviles , Inteligencia Artificial , Diarrea/diagnóstico , Humanos , Síndrome del Colon Irritable/diagnóstico , Autoinforme , Teléfono Inteligente
16.
Menopause ; 29(3): 264-275, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35213514

RESUMEN

OBJECTIVE: Hormone therapy (HT) is used to treat menopause-related conditions and symptoms. The small intestine plays key roles in metabolic and endocrine function, but the effects of HT on the small intestinal microbiome are unknown. Here, we characterize duodenal microbiome differences, and the effects of HT, in postmenopausal women. METHODS: Female participants undergoing esophagogastroduodenoscopy who were postmenopausal and taking HT (HT+), postmenopausal but not taking HT (HT-), or of reproductive age and not taking exogenous hormones (RA), were identified and matched for body mass index (±3 kg/m2). DNAs were isolated from duodenal aspirates obtained during upper endoscopy. V3 and V4 libraries were used for 16S rRNA sequencing. Serum hormone levels were analyzed by Luminex FlexMap. RESULTS: The core duodenal microbiome was different in HT- participants (n = 12) when compared with RA participants (n = 10), but more similar in HT+ (n = 13) and RA participants. HT- participants had increased Proteobacteria taxa, leading to greater microbial dysbiosis compared with HT+ participants, and had decreased prevalence of Bacteroidetes, which was associated with higher fasting glucose levels, lower duodenal microbial diversity, and lower testosterone levels. HT+ participants had significantly higher estradiol (P = 0.04) and progesterone (P = 0.04), and lower fasting glucose (P = 0.03), than HT- participants, and had increased relative abundance of Prevotella (P = 0.01), and decreased Escherichia (P = 1.12E-7), Klebsiella (P = 5.93E-7), and Lactobacillus (P = 0.02), all associated with lower cardiovascular disease risks. CONCLUSIONS: These findings support previous studies suggesting that HT may have beneficial effects following menopause, and although preliminary, may also support a beneficial effect of HT on the duodenal microbiome.


Asunto(s)
Enfermedades Cardiovasculares , Microbioma Gastrointestinal , Estradiol , Terapia de Reemplazo de Estrógeno , Femenino , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Posmenopausia , ARN Ribosómico 16S , Factores de Riesgo
17.
Am J Gastroenterol ; 117(3): 470-477, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35041624

RESUMEN

INTRODUCTION: A 2-hour breath test is the gold standard for diagnosing intestinal methanogen overgrowth (IMO). This method can be cumbersome especially if used repetitively to monitor treatment response. Therefore, we aimed to assess the reliability of a fasting single methane measurement (SMM) in diagnosing IMO and its utility as a biomarker to monitor treatment response in subjects with IMO. METHODS: First, we calculated the test characteristics of SMM compared with lactulose and glucose breath test in 2 large-scale retrospective cohorts. Second, the symptomology associated with SMM using various cutoffs was analyzed. Third, in a double-blind randomized control trial, the temporal stability of SMM levels in subjects taking placebo was analyzed. Fourth, stool Methanobrevibacter smithii loads were quantified using quantitative polymerase chain reaction and compared with SMM levels. Last, the change in SMM over time during antibiotic therapy was analyzed. RESULTS: Using the cutoff of SMM ≥10 ppm, SMM had a sensitivity of 86.4% and specificity of 100% for diagnosing IMO on the glucose and lactulose breath tests and was associated with constipation (5.65 ± 3.47 vs 4.32 ± 3.62, P = 0.008). SMM remained stable for 14 weeks without treatment (P = 0.45), and antibiotics lead to a decrease in SMM after 2 days (P < 0.0001). SMM was positively associate with stool M. smithii load (R = 0.65, P < 0.0001). DISCUSSION: Fasting SMM ≥10 ppm seems to accurately diagnose IMO, is associated with constipation, and correlates with stool M. smithii. SMM seems to be stable without treatment and decreases after antibiotics. SMM may be a useful test to diagnose IMO and monitor treatment response.


Asunto(s)
Síndrome del Colon Irritable , Lactulosa , Antibacterianos/uso terapéutico , Pruebas Respiratorias , Estreñimiento/tratamiento farmacológico , Ayuno , Glucosa , Humanos , Síndrome del Colon Irritable/complicaciones , Lactulosa/uso terapéutico , Metano/análisis , Reproducibilidad de los Resultados , Estudios Retrospectivos
18.
Microb Cell ; 9(1): 21-23, 2022 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-35083314

RESUMEN

Gut microbiome changes have been associated with human ageing and implicated in age-related diseases including Alzheimer's disease and Parkinson's disease. However, studies to date have used stool samples, which do not represent the entire gut. Although more challenging to access, the small intestine plays critical roles in host metabolism and immune function. In this paper (Leite et al. (2021), Cell Reports, doi: 10.1016/j.celrep.2021.109765), we demonstrate significant differences in the small intestinal microbiome in older subjects, using duodenal aspirates from 251 subjects aged 18-80 years. Differences included significantly decreased microbial diversity in older subjects, driven by increased relative abundance of phylum Proteobacteria, particularly family Enterobacteriaceae and coliform genera Escherichia and Klebsiella. Moreover, while this decreased diversity was associated with the 'ageing process' (comprising chronologic age, number of medications, and number of concomitant diseases), changes in certain taxa were found to be associated with number of medications alone (Klebsiella), number of diseases alone (Clostridium, Bilophila), or chronologic age alone (Escherichia, Lactobacillus, Enterococcus). Lastly, many taxa associated with increasing chronologic age were anaerobes. These changes may contribute to changes in human health that occur during the ageing process.

19.
Dig Dis Sci ; 67(1): 224-232, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33534012

RESUMEN

BACKGROUND: Proton pump inhibitor (PPI) use is extremely common. PPIs have been suggested to affect the gut microbiome, and increase risks of Clostridium difficile infection and small intestinal bacterial overgrowth (SIBO). However, existing data are based on stool analyses and PPIs act on the foregut. AIMS: To compare the duodenal and stool microbiomes in PPI and non-PPI users. METHODS: Consecutive subjects presenting for upper endoscopy without colonoscopy were recruited. Current antibiotic users were excluded. Subjects taking PPI were age- and gender-matched 1:2 to non-PPI controls. Subjects completed medical history questionnaires, and duodenal aspirates were collected using a validated protected catheter. A subset also provided stool samples. Duodenal and stool microbiomes were analyzed by 16S rRNA sequencing. RESULTS: The duodenal microbiome exhibited no phylum-level differences between PPI (N = 59) and non-PPI subjects (N = 118), but demonstrated significantly higher relative abundances of families Campylobacteraceae (3.13-fold, FDR P value < 0.01) and Bifidobacteriaceae (2.9-fold, FDR P value < 0.01), and lower relative abundance of Clostridiaceae (88.24-fold, FDR P value < 0.0001), in PPI subjects. SIBO rates were not significantly different between groups, whether defined by culture (> 103 CFU/ml) or 16S sequencing, nor between subjects taking different PPIs. The stool microbiome exhibited significantly higher abundance of family Streptococcaceae (2.14-fold, P = 0.003), and lower Clostridiaceae (2.60-fold, FDR P value = 8.61E-13), in PPI (N = 22) versus non-PPI (N = 47) subjects. CONCLUSIONS: These findings suggest that PPI use is not associated with higher rates of SIBO. Relative abundance of Clostridiaceae was reduced in both the duodenal and stool microbiomes, and Streptococcaceae was increased in stool. The clinical implications of these findings are unknown.


Asunto(s)
Síndrome del Asa Ciega , Infecciones por Clostridium , Duodeno , Heces/microbiología , Intestino Delgado/microbiología , Inhibidores de la Bomba de Protones , Biopsia con Aguja/métodos , Síndrome del Asa Ciega/diagnóstico , Síndrome del Asa Ciega/epidemiología , Infecciones por Clostridium/diagnóstico , Infecciones por Clostridium/epidemiología , Duodeno/efectos de los fármacos , Duodeno/microbiología , Duodeno/patología , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Masculino , Persona de Mediana Edad , Resultados Negativos , Inhibidores de la Bomba de Protones/administración & dosificación , Inhibidores de la Bomba de Protones/efectos adversos , Factores de Riesgo , Estados Unidos/epidemiología
20.
Cardiology ; 147(2): 225-229, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34915468

RESUMEN

BACKGROUND: In humans, methane (CH4) is exclusively produced by the intestinal microbiota and has been implicated in several conditions including cardiovascular disease. After microbial production of CH4 in the gut, it steadily crosses into the systemic circulation and reaches the lungs where it can be detected in the exhaled breath, as a surrogate measure for intestinal CH4 production. Recent reports have shown an association between CH4 and vagal dysfunction as well as the inhibition of CH4 activity on ileal contractions with atropine, suggesting its action on the parasympathetic nervous system. Given these findings, we hypothesized that CH4 may be affecting resting heart rate (HR) based on the potential effect of CH4 on the vagus nerve. OBJECTIVES: Given its possible role in the parasympathetic nervous system, we aimed to study the relationship between breath CH4 and resting HR in humans. Additionally, we performed a longitudinal study analyzing the change in HR and its association with breath CH4 over time. METHODS: First, we reviewed 1,126 subjects and compared HR in subjects with detectable and undetectable breath CH4. Second, we performed a post hoc analysis of a randomized control trial to compare the change in HR for those who had an increase in breath CH4 versus those that had a decrease in breath CH4 over 14 weeks. Last, we assessed whether a larger decrease in CH4 is associated with a larger increase in HR over time. RESULTS: In the retrospective cohort, subjects with detectable CH4 had a lower HR compared to those with undetectable CH4 (73.0 ± 0.83 vs. 76.0 ± 0.44 beats/min, p = 0.01). In the post hoc analysis, a decrease in CH4 over time was associated with an increase in HR (median ∆ = 6.5 ± 8.32 beats/min, p = 0.0006). Last, we demonstrated a biological gradient whereby a larger drop in CH4 was associated with a greater increase in HR (R = -0.31, p = 0.03). CONCLUSION: Our findings suggest a potential role for the microbiome (and specifically CH4 from methanogens) to regulate HR. Considering these findings, mechanistic studies are warranted to further investigate this potential novel microbiome-neurocardiac axis.


Asunto(s)
Pruebas Respiratorias , Metano , Frecuencia Cardíaca , Humanos , Estudios Longitudinales , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...