Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 52
1.
Antiviral Res ; 227: 105901, 2024 May 10.
Article En | MEDLINE | ID: mdl-38734211

Growing concerns regarding the emergence of highly transmissible viral diseases highlight the urgent need to expand the repertoire of antiviral therapeutics. For this reason, new strategies for neutralizing and inhibiting these viruses are necessary. A promising approach involves targeting the glycans present on the surfaces of enveloped viruses. Lectins, known for their ability to recognize specific carbohydrate molecules, offer the potential for glycan-targeted antiviral strategies. Indeed, numerous studies have reported the antiviral effects of various lectins of both endogenous and exogenous origins. However, many lectins in their natural forms, are not suitable for use as antiviral therapeutics due to toxicity, other unfavorable pharmacological effects, and/or unreliable manufacturing sources. Therefore, improvements are crucial for employing lectins as effective antiviral therapeutics. A novel approach to enhance lectins' suitability as pharmaceuticals could be the generation of recombinant lectin-Fc fusion proteins, termed "lectibodies." In this review, we discuss the scientific rationale behind lectin-based antiviral strategies and explore how lectibodies could facilitate the development of new antiviral therapeutics. We will also share our perspective on the potential of these molecules to transcend their potential use as antiviral agents.

2.
Biomedicines ; 11(7)2023 Jul 23.
Article En | MEDLINE | ID: mdl-37509705

The endoplasmic reticulum (ER) is a multifunctional organelle playing a vital role in maintaining cell homeostasis, and disruptions to its functions can have detrimental effects on cells. Dysregulated ER stress and the unfolded protein response (UPR) have been linked to various human diseases. For example, ER stress and the activation of the UPR signaling pathways in intestinal epithelial cells can either exacerbate or alleviate the severity of inflammatory bowel disease (IBD), contingent on the degree and conditions of activation. Our recent studies have shown that EPICERTIN, a recombinant variant of the cholera toxin B subunit containing an ER retention motif, can induce a protective UPR in colon epithelial cells, subsequently promoting epithelial restitution and mucosal healing in IBD models. These findings support the idea that compounds modulating UPR may be promising pharmaceutical candidates for the treatment of the disease. In this review, we summarize our current understanding of the ER stress and UPR in IBD, focusing on their roles in maintaining cell homeostasis, dysregulation, and disease pathogenesis. Additionally, we discuss therapeutic strategies that promote the cytoprotection of colon epithelial cells and reduce inflammation via pharmacological manipulation of the UPR.

3.
Sci Rep ; 13(1): 7547, 2023 05 09.
Article En | MEDLINE | ID: mdl-37161022

To reduce HIV transmission, locally applied pre-exposure prophylaxis (PrEP) products for anorectal use will be important complements to oral and injectable PrEP products already available. It is critical to preserve an intact rectal epithelium and avoid an influx of mucosal HIV target cells with such product use. In this phase 1 clinical trial, we evaluated application of a topical rectal douche product containing Q-Griffithsin (Q-GRFT). Colorectal tissue samples were obtained via sigmoidoscopy at baseline, 1 and 24 h after single-dose exposure in 15 healthy volunteers. In situ staining for epithelial junction markers and CD4+ cells were assessed as an exploratory endpoint. A high-throughput, digitalized in situ imaging analysis workflow was developed to visualize and quantify these HIV susceptibility markers. We observed no significant differences in epithelial distribution of E-cadherin, desmocollin-2, occludin, claudin-1, or zonula occludens-1 when comparing the three timepoints or Q-GRFT versus placebo. There were also no differences in %CD4+ cells within the epithelium or lamina propria in any of these comparisons. In conclusion, the rectal epithelium and CD4+ cell distribution remained unchanged following topical application of Q-GRFT. In situ visualization of HIV susceptibility markers at mucosal sites could be useful to complement standard product safety assessments.


HIV Infections , Mucous Membrane , Humans , Rectum , CD4-Positive T-Lymphocytes , HIV Infections/prevention & control
4.
Sci Rep ; 13(1): 4305, 2023 03 15.
Article En | MEDLINE | ID: mdl-36922604

Cholera toxin B subunit (CTB) is a potent immunomodulator exploitable in mucosal vaccine and immunotherapeutic development. To aid in the characterization of pleiotropic biological functions of CTB and its variants, we generated a panel of anti-CTB monoclonal antibodies (mAbs). By ELISA and surface plasmon resonance, two mAbs, 7A12B3 and 9F9C7, were analyzed for their binding affinities to cholera holotoxin (CTX), CTB, and EPICERTIN: a recombinant CTB variant possessing mucosal healing activity. Both 7A12B3 and 9F9C7 bound efficiently to CTX, CTB, and EPICERTIN with equilibrium dissociation constants at low to sub-nanomolar concentrations but bound weakly, if at all, to Escherichia coli heat-labile enterotoxin B subunit. In a cyclic adenosine monophosphate assay using Caco2 human colon epithelial cells, the 7A12B3 mAb was found to be a potent inhibitor of CTX, whereas 9F9C7 had relatively weak inhibitory activity. Meanwhile, the 9F9C7 mAb effectively detected CTB and EPICERTIN bound to the surface of Caco2 cells and mouse spleen leukocytes by flow cytometry. Using 9F9C7 in immunohistochemistry, we confirmed the preferential localization of EPICERTIN in colon crypts following oral administration of the protein in mice. Collectively, these mAbs provide valuable tools to investigate the biological functions and preclinical development of CTB variants.


Cholera Toxin , Cholera , Humans , Animals , Mice , Cholera Toxin/metabolism , Antibodies, Monoclonal , Caco-2 Cells , Adjuvants, Immunologic
5.
Plant Biotechnol J ; 20(11): 2217-2230, 2022 11.
Article En | MEDLINE | ID: mdl-35900183

Plants are an efficient production platform for manufacturing glycoengineered monoclonal antibodies and antibody-like molecules. Avaren-Fc (AvFc) is a lectin-Fc fusion protein or lectibody produced in Nicotiana benthamiana, which selectively recognizes cancer-associated high-mannose glycans. In this study, we report the generation of a glycovariant of AvFc that is devoid of plant glycans, including the core α1,3-fucose and ß1,2-xylose residues. The successful removal of these glycans was confirmed by glycan analysis using HPLC. This variant, AvFcΔXF , has significantly higher affinity for Fc gamma receptors and induces higher levels of luciferase expression in an antibody-dependent cell-mediated cytotoxicity (ADCC) reporter assay against B16F10 murine melanoma cells without inducing apoptosis or inhibiting proliferation. In the B16F10 flank tumour mouse model, we found that systemic administration of AvFcΔXF , but not an aglycosylated AvFc variant lacking affinity for Fc receptors, significantly delayed the growth of tumours, suggesting that Fc-mediated effector functions were integral. AvFcΔXF treatment also significantly reduced lung metastasis of B16F10 upon intravenous challenge whereas a sugar-binding-deficient mutant failed to show efficacy. Lastly, we determined the impact of antidrug antibodies (ADAs) on drug activity in vivo by pretreating animals with AvFcΔXF before implanting tumours. Despite a significant ADA response induced by the pretreatment, we found that the activity of AvFcΔXF was unaffected by the presence of these antibodies. These results demonstrate that glycoengineering is a powerful strategy to enhance AvFc's antitumor activity.


Plant Lectins , Receptors, IgG , Mice , Animals , Polysaccharides/chemistry , Antibodies, Monoclonal , Lectins , Antibody-Dependent Cell Cytotoxicity , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/pharmacology
6.
J Pharmacol Exp Ther ; 380(3): 162-170, 2022 03.
Article En | MEDLINE | ID: mdl-35058349

The novel wound-healing biologic EPICERTIN, a recombinant analog of cholera toxin B subunit, is in early development for the management of ulcerative colitis. This study established for the first time the pharmacokinetics (PK), bioavailability (BA), and acute safety of EPICERTIN in healthy and dextran sodium sulfate-induced colitic mice and healthy rats. For PK and BA assessments, single administrations of various concentrations of EPICERTIN were given intravenously or intrarectally to healthy and colitic C57BL/6 mice and to healthy Sprague-Dawley rats. After intravenous administration to healthy animals, the drug's plasma half-life (t 1/2) for males and females was 0.26 and 0.3 hours in mice and 19.4 and 14.5 hours in rats, respectively. After intrarectal administration, drug was detected at very low levels in only four samples of mouse plasma, with no correlation to colon epithelial integrity. No drug was detected in rat plasma. A single intrarectal dose of 0.1 µM (0.6 µg/mouse) EPICERTIN significantly facilitated the healing of damaged colonic epithelium as determined by disease activity index and histopathological scoring, whereas 10-fold higher or lower concentrations showed no effect. For acute toxicity evaluation, healthy rats were given a single intrarectal administration of various doses of EPICERTIN with sacrifice on Day 8, recording body weight, morbidity, mortality, clinical pathology, and gross necropsy observations. There were no drug-related effects of toxicological significance. The no observed adverse effect level (intrarectal) in rats was determined to be 5 µM (307 µg/animal, or 5.2 µg drug/cm2 of colorectal surface area), which is 14 times the anticipated intrarectally delivered clinical dose. SIGNIFICANCE STATEMENT: EPICERTIN is a candidate wound-healing biologic for the management of ulcerative colitis. This study determined for the first time the intravenous and intrarectal pharmacokinetics and bioavailability of the drug in healthy and colitic mice and healthy rats, and its acute safety in a dose-escalation study in rats. An initial therapeutic dose in colitic mice was also established. EPICERTIN delivered intrarectally was minimally absorbed systemically, was well tolerated, and induced epithelial wound healing topically at a low dose.


Biological Products , Colitis, Ulcerative , Wound Healing , Administration, Topical , Animals , Biological Products/administration & dosage , Biological Products/adverse effects , Biological Products/pharmacokinetics , Colitis, Ulcerative/drug therapy , Disease Models, Animal , Female , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Sprague-Dawley , Rodentia , Wound Healing/drug effects
7.
Mol Ther ; 30(4): 1523-1535, 2022 04 06.
Article En | MEDLINE | ID: mdl-35077861

Aberrant protein glycosylation is a hallmark of cancer, but few drugs targeting cancer glycobiomarkers are currently available. Here, we showed that a lectibody consisting of the high-mannose glycan-binding lectin Avaren and human immunoglobulin G1 (IgG1) Fc (AvFc) selectively recognizes a range of cell lines derived from lung, breast, colon, and blood cancers at nanomolar concentrations. Binding of AvFc to the non-small cell lung cancer (NSCLC) cell lines A549 and H460 was characterized in detail. Co-immunoprecipitation proteomics analysis revealed that epidermal growth factor receptor (EGFR) and insulin-like growth factor 1 receptor (IGF1R) are among the lectibody's common targets in these cells. AvFc blocked the activation of EGFR and IGF1R by their respective ligands in A549 cells and inhibited the migration of A549 and H460 cells upon stimulation with EGF and IGF1. Furthermore, AvFc induced potent Fc-mediated cytotoxic effects and significantly restricted A549 and H460 tumor growth in severe combined immunodeficiency (SCID) mice. Immunohistochemistry analysis of primary lung tissues from NSCLC patients demonstrated that AvFc preferentially binds to tumors over adjacent non-tumor tissues. Our findings provide evidence that increased abundance of high-mannose glycans in the glycocalyx of cancer cells can be a druggable target, and AvFc may provide a new tool to probe and target this tumor-associated glycobiomarker.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , ErbB Receptors/metabolism , Humans , Lung Neoplasms/pathology , Mannose , Mice , Polysaccharides/pharmacology
8.
Pharmaceutics ; 13(4)2021 Apr 18.
Article En | MEDLINE | ID: mdl-33919585

Epicertin (EPT) is a recombinant variant of the cholera toxin B subunit, modified with a C-terminal KDEL endoplasmic reticulum retention motif. EPT has therapeutic potential for ulcerative colitis treatment. Previously, orally administered EPT demonstrated colon epithelial repair activity in dextran sodium sulfate (DSS)-induced acute and chronic colitis in mice. However, the oral dosing requires cumbersome pretreatment with sodium bicarbonate to conserve the acid-labile drug substance while transit through the stomach, hampering its facile application in chronic disease treatment. Here, we developed a solid oral formulation of EPT that circumvents degradation in gastric acid. EPT was spray-dried and packed into enteric-coated capsules to allow for pH-dependent release in the colon. A GM1-capture KDEL-detection ELISA and size-exclusion HPLC indicated that EPT powder maintains activity and structural stability for up to 9 months. Capsule disintegration tests showed that EPT remained encapsulated at pH 1 but was released over 180 min at pH 6.8, the approximate pH of the proximal colon. An acute DSS colitis study confirmed the therapeutic efficacy of encapsulated EPT in C57BL/6 mice upon oral administration without gastric acid neutralization pretreatment compared to vehicle-treated mice (p < 0.05). These results provide a foundation for an enteric-coated oral formulation of spray-dried EPT.

9.
AAPS PharmSciTech ; 22(3): 83, 2021 Feb 24.
Article En | MEDLINE | ID: mdl-33625602

Griffithsin (GRFT) has shown potent anti-HIV activity, and it is being developed as a drug candidate for HIV prevention. Successful implementation requires thorough understanding of its preformulation characterization. In this work, preformulation assessments were conducted to characterize GRFT and identify its degradation pathways under selected conditions of temperature, light, pH, shear, ionic strength, and oxidation. Compatibility with vaginal fluid simulant, vaginal enzymes, Lactobacillus spp., and human cervicovaginal secretions was assessed. The purity, melting temperature, and HIV gp120-binding affinity of GRFT stored at 4°C and 25°C in phosphate-buffered saline (PBS) were assessed for 2 years. Chemical modifications were evaluated by intact mass analysis and peptide sequencing. Excised human ectocervical tissue permeability and localization of GRFT were evaluated. Our results demonstrated GRFT to be safe and stable under all the preformulation assessment conditions studied except oxidative stress. When GRFT was exposed to hydrogen peroxide or human cervicovaginal secretion, methionine 78 in the protein sequence underwent oxidation. GRFT did not permeate through human cervical tissue but adhered to the superficial epithelial tissue. The 2-year stability study revealed no significant change in GRFT's aggregation, degradation, melting temperature, or gp120-binding affinity despite a slow increase in oxidation over time. These studies elucidated desirable safety and bioactivity profile for GRFT, showing promise as a potential drug candidate for HIV prevention. However, susceptibility to oxidative degradation was identified. Effective protection of GRFT from oxidation is required for further development.


Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/pharmacokinetics , Biological Products/chemical synthesis , Biological Products/pharmacokinetics , Drug Compounding/methods , Amino Acid Sequence , Anti-HIV Agents/administration & dosage , Biological Products/administration & dosage , Cervix Uteri/drug effects , Cervix Uteri/metabolism , Female , HIV Infections/metabolism , HIV Infections/prevention & control , HIV-1/drug effects , HIV-1/physiology , Humans , Organ Culture Techniques , Plant Lectins/administration & dosage , Plant Lectins/chemical synthesis , Plant Lectins/pharmacokinetics , Vagina/drug effects , Vagina/metabolism
10.
Cell Mol Gastroenterol Hepatol ; 11(1): 185-198, 2021.
Article En | MEDLINE | ID: mdl-32861832

BACKGROUND & AIMS: Infection with hepatitis C virus (HCV) remains a major cause of morbidity and mortality worldwide despite the recent advent of highly effective direct-acting antivirals. The envelope glycoproteins of HCV are heavily glycosylated with a high proportion of high-mannose glycans (HMGs), which serve as a shield against neutralizing antibodies and assist in the interaction with cell-entry receptors. However, there is no approved therapeutic targeting this potentially druggable biomarker. METHODS: The anti-HCV activity of a fusion protein consisting of Avaren lectin and the fragment crystallizable (Fc) region of a human immunoglobulin G1 antibody, Avaren-Fc (AvFc) was evaluated through the use of in vitro neutralization assays as well as an in vivo challenge in a chimeric human liver (PXB) mouse model. Drug toxicity was assessed by histopathology, serum alanine aminotransferase, and mouse body weights. RESULTS: AvFc was capable of neutralizing cell culture-derived HCV in a genotype-independent manner, with 50% inhibitory concentration values in the low nanomolar range. Systemic administration of AvFc in a histidine-based buffer was well tolerated; after 11 doses every other day at 25 mg/kg there were no significant changes in body or liver weights or in blood human albumin or serum alanine aminotransferase activity. Gross necropsy and liver pathology confirmed the lack of toxicity. This regimen successfully prevented genotype 1a HCV infection in all animals, although an AvFc mutant lacking HMG binding activity failed. CONCLUSIONS: These results suggest that targeting envelope HMGs is a promising therapeutic approach against HCV infection, and AvFc may provide a safe and efficacious means to prevent recurrent infection upon liver transplantation in HCV-related end-stage liver disease patients.


Antiviral Agents/pharmacology , Hepatitis C, Chronic/drug therapy , Immunoconjugates/pharmacology , Lectins/pharmacology , Animals , Antiviral Agents/therapeutic use , Disease Models, Animal , Female , Hepacivirus/drug effects , Hepacivirus/isolation & purification , Hepatitis C, Chronic/pathology , Hepatitis C, Chronic/virology , Hepatocytes/transplantation , Humans , Immunoconjugates/genetics , Immunoconjugates/therapeutic use , Lectins/genetics , Lectins/therapeutic use , Liver/drug effects , Liver/pathology , Liver/virology , Male , Mice , Polysaccharides/antagonists & inhibitors , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/therapeutic use , Transplantation Chimera , Viral Envelope Proteins
11.
Process Biochem ; 101: 42-49, 2021 Feb.
Article En | MEDLINE | ID: mdl-33304198

Here we describe refined methods for the isolation and detection of a KDEL-tagged, plant-produced recombinant cholera toxin B subunit (CTB) that exhibits unique mucosal wound healing activity. The protein was transiently overexpressed in Nicotiana benthamiana, which generates some C-terminal KDEL truncated molecular species that are deficient in epithelial repair activity. With a new CHT chromatographical method described herein, these product-derived impurities were successfully separated from CTB with the intact KDEL sequence, as confirmed by mass spectrometry. In addition, an immunoassay capable of specifically detecting GM1 ganglioside-binding CTB with intact KDEL sequences was developed. Coupled together, these methods will aid in the quality control of KDEL-attached CTB produced in plant-based manufacturing systems towards a novel topical biotherapeutic for the treatment of acute and chronic mucosal inflammation.

12.
Proc Natl Acad Sci U S A ; 117(14): 7633-7644, 2020 04 07.
Article En | MEDLINE | ID: mdl-32213588

Membrane-bound oligosaccharides form the interfacial boundary between the cell and its environment, mediating processes such as adhesion and signaling. These structures can undergo dynamic changes in composition and expression based on cell type, external stimuli, and genetic factors. Glycosylation, therefore, is a promising target of therapeutic interventions for presently incurable forms of advanced cancer. Here, we show that cholangiocarcinoma metastasis is characterized by down-regulation of the Golgi α-mannosidase I coding gene MAN1A1, leading to elevation of extended high-mannose glycans with terminating α-1,2-mannose residues. Subsequent reshaping of the glycome by inhibiting α-mannosidase I resulted in significantly higher migratory and invasive capabilities while masking cell surface mannosylation suppressed metastasis-related phenotypes. Exclusive elucidation of differentially expressed membrane glycoproteins and molecular modeling suggested that extended high-mannose glycosylation at the helical domain of transferrin receptor protein 1 promotes conformational changes that improve noncovalent interaction energies and lead to enhancement of cell migration in metastatic cholangiocarcinoma. The results provide support that α-1,2-mannosylated N-glycans present on cancer cell membrane proteins may serve as therapeutic targets for preventing metastasis.


Cholangiocarcinoma/metabolism , Cholangiocarcinoma/pathology , Mannose/metabolism , Animals , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/pathology , Female , Glycosylation , Humans , Membrane Glycoproteins/metabolism , Mice , Models, Molecular , Neoplasm Metastasis , Phenotype , Protein Multimerization
13.
Plant Biotechnol J ; 18(10): 2109-2117, 2020 Oct.
Article En | MEDLINE | ID: mdl-32096288

Plant molecular farming (PMF) is rapidly gaining traction as a viable alternative to the currently accepted paradigm of producing biologics. While the platform is potentially cheaper and more scalable than conventional manufacturing systems, expression yields and appropriate post-translational modifications along the plant secretory pathway remain a challenge for certain proteins. Viral fusion glycoproteins in particular are often expressed at low yields in plants and, in some cases, may not be appropriately processed. Recently, however, transiently or stably engineering the host plant has shown promise as a strategy for producing heterologous proteins with more complex maturation requirements. In this study we investigated the co-expression of a suite of human chaperones to improve the production of a human immunodeficiency virus (HIV) type 1 soluble gp140 vaccine candidate in Nicotiana benthamiana plants. The co-expression of calreticulin (CRT) resulted in a dramatic increase in Env expression and ameliorated the endoplasmic reticulum (ER) stress response - as evidenced by lower transcript abundance of representative stress-responsive genes. The co-expression of CRT similarly improved accumulation of glycoproteins from Epstein-Barr virus (EBV), Rift Valley fever virus (RVFV) and chikungunya virus (CHIKV), suggesting that the endogenous chaperone machinery may impose a bottleneck for their production. We subsequently successfully combined the co-expression of human CRT with the transient expression of human furin, to enable the production of an appropriately cleaved HIV gp140 antigen. These transient plant host engineering strategies are a promising approach for the production of high yields of appropriately processed and cleaved viral glycoproteins.

14.
Curr Opin Biotechnol ; 61: 82-88, 2020 02.
Article En | MEDLINE | ID: mdl-31785553

Plants are routinely utilized as efficient production platforms for the development of anti-cancer biologics leading to novel anti-cancer vaccines, immunotherapies, and drug-delivery modalities. Various biosimilar/biobetter antibodies and immunogens based on tumor-associated antigens have been produced and optimized for plant expression. Plant virus nanoparticles, including those derived from cowpea mosaic virus or tobacco mosaic virus in particular have shown promise as immunotherapies stimulating tumor-associated immune cells and as drug carriers delivering conjugated chemotherapeutics effectively to tumors. Advancements have also been made toward the development of lectins that can selectively recognize cancer cells. The ease at which plant systems can be utilized for the production of these products presents an opportunity to further develop novel and exciting anti-cancer biologics.


Biological Products , Cancer Vaccines , Comovirus/immunology , Tobacco Mosaic Virus , Drug Carriers
15.
Sci Rep ; 9(1): 18120, 2019 12 02.
Article En | MEDLINE | ID: mdl-31792342

Natural-product derived lectins can function as potent viral inhibitors with minimal toxicity as shown in vitro and in small animal models. We here assessed the effect of rectal application of an anti-HIV lectin-based microbicide Q-Griffithsin (Q-GRFT) in rectal tissue samples from rhesus macaques. E-cadherin+ cells, CD4+ cells and total mucosal cells were assessed using in situ staining combined with a novel customized digital image analysis platform. Variations in cell numbers between baseline, placebo and Q-GRFT treated samples were analyzed using random intercept linear mixed effect models. The frequencies of rectal E-cadherin+ cells remained stable despite multiple tissue samplings and Q-GRFT gel (0.1%, 0.3% and 1%, respectively) treatment. Whereas single dose application of Q-GRFT did not affect the frequencies of rectal CD4+ cells, multi-dose Q-GRFT caused a small, but significant increase of the frequencies of intra-epithelial CD4+ cells (placebo: median 4%; 1% Q-GRFT: median 7%) and of the CD4+ lamina propria cells (placebo: median 30%; 0.1-1% Q-GRFT: median 36-39%). The resting time between sampling points were further associated with minor changes in the total and CD4+ rectal mucosal cell levels. The results add to general knowledge of in vivo evaluation of anti-HIV microbicide application concerning cellular effects in rectal mucosa.


Anti-HIV Agents/pharmacology , Anti-Infective Agents, Local/pharmacology , Intestinal Mucosa/drug effects , Lectins/pharmacology , Plant Lectins/pharmacology , Rectum/drug effects , Animals , Anti-HIV Agents/administration & dosage , CD4 Antigens/metabolism , Cadherins/metabolism , Cell Count , Epithelial Cells/drug effects , Intestinal Mucosa/cytology , Intestinal Mucosa/immunology , Lectins/administration & dosage , Macaca mulatta , Plant Lectins/administration & dosage , Recombinant Proteins , Rectum/cytology , Rectum/immunology , Time Factors
16.
Toxins (Basel) ; 11(12)2019 11 20.
Article En | MEDLINE | ID: mdl-31756977

Cholera toxin B subunit (CTB), a non-toxic homopentameric component of Vibrio cholerae holotoxin, is an oral cholera vaccine antigen that induces an anti-toxin antibody response. Recently, we demonstrated that a recombinant CTB variant with a Lys-Asp-Glu-Leu (KDEL) endoplasmic reticulum retention motif (CTB-KDEL) exhibits colon mucosal healing effects that have therapeutic implications for inflammatory bowel disease (IBD). Herein, we investigated the feasibility of CTB-KDEL for the treatment of chronic colitis. We found that weekly oral administration of CTB-KDEL, dosed before or after the onset of chronic colitis, induced by repeated dextran sodium sulfate (DSS) exposure, could significantly reduce disease activity index scores, intestinal permeability, inflammation, and histological signs of chronicity. To address the consequences of immunogenicity, mice (C57BL/6 or C3H/HeJ strains) were pre-exposed to CTB-KDEL then subjected to DSS colitis and CTB-KDEL treatment. While the pre-dosing of CTB-KDEL elicited high-titer anti-drug antibodies (ADAs) of the immunoglobin A (IgA) isotype in the intestine of C57BL/6 mice, the therapeutic effects of CTB-KDEL were similar to those observed in C3H/HeJ mice, which showed minimal ADAs under the same experimental conditions. Thus, the immunogenicity of CTB-KDEL does not seem to impede the protein's mucosal healing efficacy. These results support the development of CTB-KDEL for IBD therapy.


Cholera Toxin/therapeutic use , Colitis/chemically induced , Colitis/drug therapy , Oligopeptides , Protein Sorting Signals , Animals , Chronic Disease , Cytokines/metabolism , Dextran Sulfate , Female , Immunoglobulin A/immunology , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Recombinant Proteins/therapeutic use
17.
Mol Ther ; 27(11): 2038-2052, 2019 11 06.
Article En | MEDLINE | ID: mdl-31471224

High-mannose-type glycans (HMGs) are aberrantly enriched on HIV envelope glycoproteins. However, there is currently no drug selectively targeting HIV-associated HMGs. Here, we describe a novel HMG-targeting "lectibody," a recombinant Fc-fusion protein comprising human IgG1 Fc and a novel actinohivin lectin variant (Avaren) obtained by structure-guided modifications for improved overall surface charge properties (AvFc). AvFc was engineered and produced using a rapid and scalable plant-based transient overexpression system. The lectibody exhibited potent antiviral activity against HIV-1 groups M and O primary viruses, as well as HIV-2 and simian immunodeficiency virus (SIV) strains, without affecting normal human blood cells. Furthermore, the lectibody induced Fc-mediated cell killing activity against HIV-1-infected cells and selectively recognized SIVmac239-infected macaque mesenteric lymph node cells in vitro. AvFc showed an extended serum half-life in rats and rhesus macaques, while no discernible toxicity was observed upon repeated systemic dosing in mice. These results highlight AvFc's potential as a biotherapeutic targeting HIV-associated HMGs of cell-free virions, as well as productively infected cells, providing a foundation for new anti-HIV strategies. Efficient and cost-effective bioproduction in greenhouse facilities may open unique possibilities for further development of AvFc.


Genetic Engineering , Mannose/antagonists & inhibitors , Polysaccharides/antagonists & inhibitors , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology , env Gene Products, Human Immunodeficiency Virus/antagonists & inhibitors , Amino Acid Sequence , Animals , Female , Flow Cytometry , Genetic Vectors/genetics , HIV-1 , Macaca mulatta , Protein Conformation , Rats , Recombinant Fusion Proteins/chemistry , Simian Immunodeficiency Virus
18.
FASEB J ; 33(12): 13527-13545, 2019 12.
Article En | MEDLINE | ID: mdl-31560862

Cholera toxin B subunit (CTB) exhibits broad-spectrum biologic activity upon mucosal administration. Here, we found that a recombinant CTB containing an endoplasmic reticulum (ER) retention motif (CTB-KDEL) induces colon epithelial wound healing in colitis via the activation of an unfolded protein response (UPR) in colon epithelial cells. In a Caco2 cell wound healing model, CTB-KDEL, but not CTB or CTB-KDE, facilitated cell migration via interaction with the KDEL receptor, localization in the ER, UPR activation, and subsequent TGF-ß signaling. Inhibition of the inositol-requiring enzyme 1/X-box binding protein 1 arm of UPR abolished the cell migration effect of CTB-KDEL, indicating that the pathway is indispensable for the activity. CTB-KDEL's capacity to induce UPR and epithelial restitution or wound healing was corroborated in a dextran sodium sulfate-induced acute colitis mouse model. Furthermore, CTB-KDEL induced a UPR, up-regulated wound healing pathways, and maintained viable crypts in colon explants from patients with inflammatory bowel disease (IBD). In summary, CTB-KDEL exhibits unique wound healing effects in the colon that are mediated by its localization to the ER and subsequent activation of UPR in epithelial cells. The results provide implications for a novel therapeutic approach for mucosal healing, a significant unmet need in IBD treatment.-Royal, J. M., Oh, Y. J., Grey, M. J., Lencer, W. I., Ronquillo, N., Galandiuk, S., Matoba, N. A modified cholera toxin B subunit containing an ER retention motif enhances colon epithelial repair via an unfolded protein response.


Cholera Toxin/pharmacology , Colitis/drug therapy , Endoplasmic Reticulum/metabolism , Epithelial Cells/drug effects , Inflammatory Bowel Diseases/drug therapy , Unfolded Protein Response , Wound Healing/drug effects , Adjuvants, Immunologic/pharmacology , Adult , Aged , Amino Acid Motifs , Animals , Colitis/chemically induced , Colitis/metabolism , Colitis/pathology , Colon/drug effects , Colon/metabolism , Colon/pathology , Dextran Sulfate/toxicity , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , Humans , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Male , Mice , Mice, Inbred C57BL , Middle Aged , Young Adult
19.
Plant Biotechnol J ; 17(8): 1646-1656, 2019 08.
Article En | MEDLINE | ID: mdl-30729651

The discovery of broadly neutralizing antibodies (bNAbs) has been a major step towards better prophylactic and therapeutic agents against human immunodeficiency virus type 1 (HIV-1). However, effective therapy will likely require a combination of anti-HIV agents to avoid viral evasion. One possible solution to this problem is the creation of bispecific molecules that can concurrently target two vulnerable sites providing synergistic inhibitory effects. Here, we describe the production in plants and anti-HIV activity of a novel bispecific fusion protein consisting of the antigen-binding fragment (Fab) of the CD4 binding site-specific bNAb VRC01 and the antiviral lectin Avaren, which targets the glycan shield of the HIV-1 envelope (VRC01Fab -Avaren). This combination was justified by a preliminary experiment demonstrating the synergistic HIV-1 neutralization activity of VRC01 and Fc-fused Avaren dimer (Avaren-Fc). Using the GENEWARE® tobacco mosaic virus vector, VRC01Fab -Avaren was expressed in Nicotiana benthamiana and purified using a three-step chromatography procedure. Surface plasmon resonance and ELISA demonstrated that both the Avaren and VRC01Fab moieties retain their individual binding specificities. VRC01Fab -Avaren demonstrated enhanced neutralizing activity against representative HIV-1 strains from A, B and C clades, compared to equimolar combinations of VRC01Fab and Avaren. Notably, VRC01Fab -Avaren showed significantly stronger neutralizing effects than the bivalent parent molecules VRC01 IgG and Avaren-Fc, with IC50 values ranging from 48 to 310 pm. These results support the continued development of bispecific anti-HIV proteins based on Avaren and bNAbs, to which plant-based transient overexpression systems will provide an efficient protein engineering and production platform.


Antibodies, Bispecific/biosynthesis , HIV Antibodies/biosynthesis , HIV-1 , Lectins/biosynthesis , Protein Engineering , Recombinant Fusion Proteins/biosynthesis , Antibodies, Bispecific/pharmacology , Antibodies, Neutralizing/biosynthesis , Antibodies, Neutralizing/pharmacology , HIV Antibodies/pharmacology , Lectins/pharmacology , Recombinant Fusion Proteins/pharmacology , Nicotiana
20.
Sci Rep ; 8(1): 8059, 2018 05 23.
Article En | MEDLINE | ID: mdl-29795295

Topical microbicides are being explored as an HIV prevention method for individuals who practice receptive anal intercourse. In vivo studies of these microbicides are critical to confirm safety. Here, we evaluated the impact of a rectal microbicide containing the antiviral lectin, Griffithsin (GRFT), on the rectal mucosal proteome and microbiome. Using a randomized, crossover placebo-controlled design, six rhesus macaques received applications of hydroxyethylcellulose (HEC)- or carbopol-formulated 0.1% GRFT gels. Rectal mucosal samples were then evaluated by label-free tandem MS/MS and 16 S rRNA gene amplicon sequencing, for proteomics and microbiome analyses, respectively. Compared to placebo, GRFT gels were not associated with any significant changes to protein levels at any time point (FDR < 5%), but increased abundances of two common and beneficial microbial taxa after 24 hours were observed in HEC-GRFT gel (p < 2E-09). Compared to baseline, both placebo formulations were associated with alterations to proteins involved in proteolysis, activation of the immune response and inflammation after 2 hours (p < 0.0001), and increases in beneficial Faecalibacterium spp. after 24 hours in HEC placebo gel (p = 4.21E-15). This study supports the safety profile of 0.1% GRFT gel as an anti-HIV microbicide and demonstrates that current placebo formulations may associate with changes to rectal proteome and microbiota.


Anti-HIV Agents/administration & dosage , Anti-Infective Agents, Local/administration & dosage , HIV Infections/drug therapy , Microbiota/genetics , Mucous Membrane/drug effects , Plant Lectins/administration & dosage , Proteome/analysis , Rectum/drug effects , Animals , Anti-HIV Agents/pharmacology , Gels , HIV Infections/metabolism , HIV Infections/microbiology , HIV-1/drug effects , Humans , Macaca mulatta , Microbiota/drug effects , Mucous Membrane/metabolism , Mucous Membrane/microbiology , Proteome/drug effects , Rectum/metabolism , Rectum/microbiology
...