Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 17 de 17
1.
Proc Natl Acad Sci U S A ; 119(23): e2201562119, 2022 06 07.
Article En | MEDLINE | ID: mdl-35653561

The utilization of avidity to drive and tune functional responses is fundamental to antibody biology and often underlies the mechanisms of action of monoclonal antibody drugs. There is increasing evidence that antibodies leverage homotypic interactions to enhance avidity, often through weak transient interfaces whereby self-association is coupled with target binding. Here, we comprehensively map the Fab­Fab interfaces of antibodies targeting DR5 and 4-1BB that utilize homotypic interaction to promote receptor activation and demonstrate that both antibodies have similar self-association determinants primarily encoded within a germline light chain complementarity determining region 2 (CDRL2). We further show that these determinants can be grafted onto antibodies of distinct target specificity to substantially enhance their activity. An expanded characterization of all unique germline CDRL2 sequences reveals additional self-association sequence determinants encoded in the human germline repertoire. Our results suggest that this phenomenon is unique to CDRL2, and is correlated with the less frequent antigen interaction and lower somatic hypermutation associated with this loop. This work reveals a previously unknown avidity mechanism in antibody native biology that can be exploited for the engineering of biotherapeutics.


Antibody Affinity , Complementarity Determining Regions , Germ Cells , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/genetics , Drug Therapy , Immunoglobulin Fab Fragments
2.
Sci Transl Med ; 14(646): eabn1252, 2022 05 25.
Article En | MEDLINE | ID: mdl-35412328

New variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to arise and prolong the coronavirus disease 2019 (COVID-19) pandemic. Here, we used a cell-free expression workflow to rapidly screen and optimize constructs containing multiple computationally designed miniprotein inhibitors of SARS-CoV-2. We found the broadest efficacy was achieved with a homotrimeric version of the 75-residue angiotensin-converting enzyme 2 (ACE2) mimic AHB2 (TRI2-2) designed to geometrically match the trimeric spike architecture. Consistent with the design model, in the cryo-electron microscopy structure TRI2-2 forms a tripod at the apex of the spike protein that engaged all three receptor binding domains simultaneously. TRI2-2 neutralized Omicron (B.1.1.529), Delta (B.1.617.2), and all other variants tested with greater potency than the monoclonal antibodies used clinically for the treatment of COVID-19. TRI2-2 also conferred prophylactic and therapeutic protection against SARS-CoV-2 challenge when administered intranasally in mice. Designed miniprotein receptor mimics geometrically arrayed to match pathogen receptor binding sites could be a widely applicable antiviral therapeutic strategy with advantages over antibodies in greater resistance to viral escape and antigenic drift, and advantages over native receptor traps in lower chances of autoimmune responses.


COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , Cryoelectron Microscopy , Humans , Mice , Spike Glycoprotein, Coronavirus
3.
Antib Ther ; 5(1): 11-17, 2022 Jan.
Article En | MEDLINE | ID: mdl-35059561

The most robust strategy in antibody discovery is the use of immunized animals and the ability to isolate and immortalize immune B-cells to hybridoma for further interrogation. However, capturing the full repertoire of an immunized animal is labor intensive, time consuming and limited in throughput. Therefore, techniques to directly mine the antibody repertoire of primary B-cells are of great importance in antibody discovery. In the current study, we present a method to isolate individual antigen-specific primary B-cells using the CellCellector™ single-cell isolation platform from XenoMouse® (XM) immunized with a recombinant therapeutic protein, EGFR. We screened a subset of CD138+ B-cells and identified 238 potential EGFR-specific B-cells from 1189 antibody-secreting cells (ASCs) and isolated 94 by CellCellector. We identified a diverse set of heavy chain complementarity-determining region sequences and cloned and expressed 20 into a standard human immunoglobulin G1 antibody format. We further characterized and identified 13 recombinant antibodies that engage soluble and native forms of EGFR. By extrapolating the method to all 400 000 CD138+ B-cells extracted from one EGFR immunized XM, a potential 1196 unique EGFR-specific antibodies could be discovered. CellCelector allows for interrogating the B-cell pool directly and isolating B-cells specific to the therapeutic target of interest. Furthermore, antibody sequences recovered from isolated B-cells engage the native and recombinant target, demonstrating the CellCellector can serve as a platform in antibody discovery.

4.
bioRxiv ; 2021 Jul 07.
Article En | MEDLINE | ID: mdl-34268509

Escape variants of SARS-CoV-2 are threatening to prolong the COVID-19 pandemic. To address this challenge, we developed multivalent protein-based minibinders as potential prophylactic and therapeutic agents. Homotrimers of single minibinders and fusions of three distinct minibinders were designed to geometrically match the SARS-CoV-2 spike (S) trimer architecture and were optimized by cell-free expression and found to exhibit virtually no measurable dissociation upon binding. Cryo-electron microscopy (cryoEM) showed that these trivalent minibinders engage all three receptor binding domains on a single S trimer. The top candidates neutralize SARS-CoV-2 variants of concern with IC 50 values in the low pM range, resist viral escape, and provide protection in highly vulnerable human ACE2-expressing transgenic mice, both prophylactically and therapeutically. Our integrated workflow promises to accelerate the design of mutationally resilient therapeutics for pandemic preparedness. ONE-SENTENCE SUMMARY: We designed, developed, and characterized potent, trivalent miniprotein binders that provide prophylactic and therapeutic protection against emerging SARS-CoV-2 variants of concern.

6.
MAbs ; 11(6): 996-1011, 2019.
Article En | MEDLINE | ID: mdl-31156033

Agonism of members of the tumor necrosis factor receptor superfamily (TNFRSF) with monoclonal antibodies is of high therapeutic interest due to their role in immune regulation and cell proliferation. A major hurdle for pharmacologic activation of this receptor class is the requirement for high-order clustering, a mechanism that imposes a reliance in vivo on Fc receptor-mediated crosslinking. This extrinsic dependence represents a potential limitation of virtually the entire pipeline of agonist TNFRSF antibody drugs, of which none have thus far been approved or reached late-stage clinical trials. We show that tetravalent biepitopic targeting enables robust intrinsic antibody agonism for two members of this family, OX40 and DR5, that is superior to extrinsically crosslinked native parental antibodies. Tetravalent biepitopic anti-OX40 engagement co-stimulated OX40low cells, obviated the requirement for CD28 co-signal for T cell activation, and enabled superior pharmacodynamic activity relative to native IgG in a murine vaccination model. This work establishes a proof of concept for an engineering approach that addresses a major gap for the therapeutic activation of this important receptor class.


Antibodies, Monoclonal/immunology , Immunologic Capping , OX40 Ligand/agonists , Receptors, TNF-Related Apoptosis-Inducing Ligand/agonists , Signal Transduction/immunology , T-Lymphocytes/immunology , Animals , CD28 Antigens/immunology , CHO Cells , Cricetulus , Humans , Jurkat Cells , Mice , Mice, SCID , Mice, Transgenic , OX40 Ligand/immunology , Receptors, Fc/immunology , Receptors, TNF-Related Apoptosis-Inducing Ligand/immunology , T-Lymphocytes/cytology
7.
Org Biomol Chem ; 14(22): 5148-56, 2016 Jun 14.
Article En | MEDLINE | ID: mdl-27184468

In this report, we describe the methodology for 96 parallel organic syntheses of peptides on Teflon-patterned paper assisted by heating with an infra-red lamp. SPOT synthesis is an important technology for production of peptide arrays on a paper-based support for rapid identification of peptide ligands, epitope mapping, and identification of bio-conjugation reactions. The major drawback of the SPOT synthesis methodology published to-date is suboptimal reaction conversion due to mass transport limitations in the unmixed reaction spot. The technology developed in this report overcomes these problems by changing the environment of the reaction from static to dynamic (flow-through), and further accelerating the reaction by selective heating of the reaction support in contact with activated amino acids. Patterning paper with Teflon allows for droplets of organic solvents to be confined in a zone on the paper array and flow through the paper at a well-defined rate and provide a convenient, power-free setup for flow-through solid-phase synthesis and efficient assembly of peptide arrays. We employed an infra-red (IR) lamp to locally heat the cellulosic support during the flow-through delivery of the reagents to each zone of the paper-based array. We demonstrate that IR-heating in solid phase peptide synthesis shortened the reaction time necessary for amide bond formation down to 3 minutes; in some couplings of alpha amino acids, conversion rates increased up to fifteen folds. The IR-heating improved the assembly of difficult sequences, such as homo-oligomers of all 20 natural amino acids.


Hot Temperature , Paper , Peptides/chemical synthesis , Polytetrafluoroethylene , Solid-Phase Synthesis Techniques/methods
8.
Methods Mol Biol ; 1248: 249-66, 2015.
Article En | MEDLINE | ID: mdl-25616338

Genetically encoded peptide libraries enabled the discovery of ligands for clinically relevant targets and functional materials. Next-generation sequencing (NGS) of these libraries improved the selection of ligands by detecting low abundant clones and quantifying changes in copy numbers of clones without many rounds of selection. Although NGS platforms have been widely used in genome assembly, quantification of gene expression (RNA-seq), and metagenomic analyses, few examples in the literature describe sequencing phage libraries. This chapter aims to provide a detailed method for sequencing a Ph.D.-7 phage display library by Ion Torrent. The main techniques covered in this chapter include (1) preparation of a phage library for sequencing, (2) sequencing, and (3) analysis of the sequencing data by a custom Matlab script.


Bacteriophage T7/genetics , High-Throughput Nucleotide Sequencing/methods , Peptide Library , Animals , Bacteriophage T7/chemistry , Humans
9.
Angew Chem Int Ed Engl ; 53(25): 6374-7, 2014 Jun 16.
Article En | MEDLINE | ID: mdl-24729420

A simple method is described for the patterned deposition of Teflon on paper to create an integrated platform for parallel organic synthesis and cell-based assays. Solvent-repelling barriers made of Teflon-impregnated paper confine organic solvents to specific zones of the patterned array and allow for 96 parallel flow-through syntheses on paper. The confinement and flow-through mixing significantly improves the peptide yield and simplifies the automation of this synthesis. The synthesis of 100 peptides ranging from 7 to 14 amino acids in length gave over 60% purity for the majority of the peptides (>95% yield per coupling/deprotection cycle). The resulting peptide arrays were used in cell-based screening to identify 14 potent bioactive peptides that support the adhesion or proliferation of breast cancer cells in a 3D environment. In the future, this technology could be used for the screening of more complex phenotypic responses, such as cell migration or differentiation.


Paper , Peptides/chemical synthesis , Polytetrafluoroethylene/chemistry , Tissue Array Analysis/instrumentation , Peptides/chemistry
10.
PLoS One ; 9(1): e84491, 2014.
Article En | MEDLINE | ID: mdl-24427287

In spite of the power of phage display technology to identify variant proteins with novel properties in large libraries, it has only been previously applied to one member of the serpin superfamily. Here we describe phage display of human alpha-1 proteinase inhibitor (API) in a T7 bacteriophage system. API M358R fused to the C-terminus of T7 capsid protein 10B was directly shown to form denaturation-resistant complexes with thrombin by electrophoresis and immunoblotting following exposure of intact phages to thrombin. We therefore developed a biopanning protocol in which thrombin-reactive phages were selected using biotinylated anti-thrombin antibodies and streptavidin-coated magnetic beads. A library consisting of displayed API randomized at residues 357 and 358 (P2-P1) yielded predominantly Pro-Arg at these positions after five rounds of thrombin selection; in contrast the same degree of mock selection yielded only non-functional variants. A more diverse library of API M358R randomized at residues 352-356 (P7-P3) was also probed, yielding numerous variants fitting a loose consensus of DLTVS as judged by sequencing of the inserts of plaque-purified phages. The thrombin-selected sequences were transferred en masse into bacterial expression plasmids, and lysates from individual colonies were screening for API-thrombin complexing. The most active candidates from this sixth round of screening contained DITMA and AAFVS at P7-P3 and inhibited thrombin 2.1-fold more rapidly than API M358R with no change in reaction stoichiometry. Deep sequencing using the Ion Torrent platform confirmed that over 800 sequences were significantly enriched in the thrombin-panned versus naïve phage display library, including some detected using the combined phage display/bacterial lysate screening approach. Our results show that API joins Plasminogen Activator Inhibitor-1 (PAI-1) as a serpin amenable to phage display and suggest the utility of this approach for the selection of "designer serpins" with novel reactivity and/or specificity.


Cell Surface Display Techniques , Thrombin/metabolism , alpha 1-Antitrypsin/genetics , alpha 1-Antitrypsin/metabolism , Amino Acid Motifs , Amino Acid Sequence , Bacteriophages/genetics , Bacteriophages/metabolism , Capsid Proteins/chemistry , Capsid Proteins/genetics , Capsid Proteins/metabolism , Gene Expression , Genetic Vectors/genetics , High-Throughput Nucleotide Sequencing , Humans , Kinetics , Models, Molecular , Peptide Library , Protein Binding , Protein Conformation , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , alpha 1-Antitrypsin/chemistry
11.
ACS Chem Biol ; 9(2): 443-50, 2014 Feb 21.
Article En | MEDLINE | ID: mdl-24195775

Light-responsive ligands are useful tools in biochemistry and cell biology because the function of these ligands can be spatially and temporally controlled. Conventional design of such ligands relies on previously available data about the structure of both the ligand and the receptor. In this paper, we describe de novo discovery of light-responsive ligands through screening of a genetically encoded light-responsive library. We ligated a photoresponsive azobenzene core to a random CX7C peptide library displayed on the coat protein of M13 phage. A one-pot alkylation/reduction of the cysteines yielded a photoresponsive library of random heptapeptide macrocycles with over 2 × 10(8) members. We characterized the reaction on-phage and optimized the yield of the modifications in phage libraries. Screening of the library against streptavidin yielded three macrocycles that bind to streptavidin in the dark and cease binding upon irradiation with 370 nm light. All ligands restored their binding properties upon thermal relaxation and could be turned ON and OFF for several cycles. We measured dissociation constants, Kd, by electrospray ionization mass spectrometry (ESI-MS) binding assay. For ligand ACGFERERTCG, the Kd of cis and trans isomers differed by 22-fold; an incomplete isomerization (85%), however, resulted in the apparent difference of 4.5-fold between the dark and the irradiated state. We anticipate that the selection strategy described in this report can be used to find light-responsive ligands for many targets that do not have known natural ligands.


Azo Compounds/chemistry , Bacteriophage M13/chemistry , Macrocyclic Compounds/chemistry , Oligopeptides/chemistry , Peptide Library , Amino Acid Sequence , Azo Compounds/metabolism , Ligands , Light , Macrocyclic Compounds/metabolism , Oligopeptides/metabolism , Photochemical Processes , Protein Binding , Streptavidin/metabolism
12.
Nucleic Acids Res ; 42(3): 1784-98, 2014 Feb.
Article En | MEDLINE | ID: mdl-24217917

Phage display empowered the development of proteins with new function and ligands for clinically relevant targets. In this report, we use next-generation sequencing to analyze phage-displayed libraries and uncover a strong bias induced by amplification preferences of phage in bacteria. This bias favors fast-growing sequences that collectively constitute <0.01% of the available diversity. Specifically, a library of 10(9) random 7-mer peptides (Ph.D.-7) includes a few thousand sequences that grow quickly (the 'parasites'), which are the sequences that are typically identified in phage display screens published to date. A similar collapse was observed in other libraries. Using Illumina and Ion Torrent sequencing and multiple biological replicates of amplification of Ph.D.-7 library, we identified a focused population of 770 'parasites'. In all, 197 sequences from this population have been identified in literature reports that used Ph.D.-7 library. Many of these enriched sequences have confirmed function (e.g. target binding capacity). The bias in the literature, thus, can be viewed as a selection with two different selection pressures: (i) target-binding selection, and (ii) amplification-induced selection. Enrichment of parasitic sequences could be minimized if amplification bias is removed. Here, we demonstrate that emulsion amplification in libraries of ∼ 10(6) diverse clones prevents the biased selection of parasitic clones.


Cell Surface Display Techniques , High-Throughput Nucleotide Sequencing , Peptide Library , Data Interpretation, Statistical , Sequence Analysis, DNA
13.
Comput Math Methods Med ; 2013: 491612, 2013.
Article En | MEDLINE | ID: mdl-24416071

Next-generation sequencing techniques empower selection of ligands from phage-display libraries because they can detect low abundant clones and quantify changes in the copy numbers of clones without excessive selection rounds. Identification of errors in deep sequencing data is the most critical step in this process because these techniques have error rates >1%. Mechanisms that yield errors in Illumina and other techniques have been proposed, but no reports to date describe error analysis in phage libraries. Our paper focuses on error analysis of 7-mer peptide libraries sequenced by Illumina method. Low theoretical complexity of this phage library, as compared to complexity of long genetic reads and genomes, allowed us to describe this library using convenient linear vector and operator framework. We describe a phage library as N × 1 frequency vector n = ||ni||, where ni is the copy number of the ith sequence and N is the theoretical diversity, that is, the total number of all possible sequences. Any manipulation to the library is an operator acting on n. Selection, amplification, or sequencing could be described as a product of a N × N matrix and a stochastic sampling operator (Sa). The latter is a random diagonal matrix that describes sampling of a library. In this paper, we focus on the properties of Sa and use them to define the sequencing operator (Seq). Sequencing without any bias and errors is Seq = Sa IN, where IN is a N × N unity matrix. Any bias in sequencing changes IN to a nonunity matrix. We identified a diagonal censorship matrix (CEN), which describes elimination or statistically significant downsampling, of specific reads during the sequencing process.


High-Throughput Nucleotide Sequencing/methods , Algorithms , Bacteriophages/genetics , Computer Simulation , DNA/chemistry , Ligands , Models, Theoretical , Peptide Library , Peptides/genetics , RNA/chemistry , Reproducibility of Results , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid , Software
14.
Methods ; 58(1): 18-27, 2012 Sep.
Article En | MEDLINE | ID: mdl-22819853

In this paper, we describe a complete experimental setup for the uniform amplification of libraries of phage. Uniform amplification, which multiplies every phage clone by the same amount irrespective of the growth rate of the clone is essential for phage-display screening. Amplification of phage libraries in a common solution is often non-uniform: it favors fast-growing clones and eliminates those that grow slower. This competition leads to elimination of many useful binding clones, and it is a major barrier to identification of ligands for targets with multiple binding sites such as cells, tissues, or mixtures of proteins. Uniform amplification is achieved by encapsulating individual phage clones into isolated compartments (droplets) of identical volume. Each droplet contains culture medium and an excess of host (Escherichia coli). Here, we describe microfluidics devices that generate mono-disperse droplet-based compartments, and optimal conditions for amplification of libraries of different size. We also describe the detailed synthesis of a perfluoro surfactant, which gives droplets exceptional stability. Droplets stabilized by this compound do not coalesce after many hours in shaking culture. We identified a commercially available compound (Krytox), which destabilizes these droplets to recover the amplified libraries. Overall, uniform amplification is a sequence of three simple steps: (1) encapsulation of mixture of phage and bacteria in droplets using microfluidics; (2) incubation of droplets in a shaking culture; (3) destabilization of droplets to harvest the amplified phage. We anticipate that this procedure can be easily adapted in any academic or industrial laboratory that uses phage display.


Cell Surface Display Techniques/methods , Culture Techniques , Peptide Library , Bacteriophages/genetics , Emulsions , Escherichia coli/genetics , Fluorocarbons/chemical synthesis , Microfluidic Analytical Techniques , Microfluidics , Polyethylene Glycols/chemical synthesis , Surface-Active Agents/chemical synthesis
15.
Methods ; 58(1): 47-55, 2012 Sep.
Article En | MEDLINE | ID: mdl-22819855

This paper presents an analysis of phage-displayed libraries of peptides using Illumina. We describe steps for the preparation of short DNA fragments for deep sequencing and MatLab software for the analysis of the results. Screening of peptide libraries displayed on the surface of bacteriophage (phage display) can be used to discover peptides that bind to any target. The key step in this discovery is the analysis of peptide sequences present in the library. This analysis is usually performed by Sanger sequencing, which is labor intensive and limited to examination of a few hundred phage clones. On the other hand, Illumina deep-sequencing technology can characterize over 10(7) reads in a single run. We applied Illumina sequencing to analyze phage libraries. Using PCR, we isolated the variable regions from M13KE phage vectors from a phage display library. The PCR primers contained (i) sequences flanking the variable region, (ii) barcodes, and (iii) variable 5'-terminal region. We used this approach to examine how diversity of peptides in phage display libraries changes as a result of amplification of libraries in bacteria. Using HiSeq single-end Illumina sequencing of these fragments, we acquired over 2×10(7) reads, 57 base pairs (bp) in length. Each read contained information about the barcode (6bp), one complimentary region (12bp) and a variable region (36bp). We applied this sequencing to a model library of 10(6) unique clones and observed that amplification enriches ∼150 clones, which dominate ∼20% of the library. Deep sequencing, for the first time, characterized the collapse of diversity in phage libraries. The results suggest that screens based on repeated amplification and small-scale sequencing identify a few binding clones and miss thousands of useful clones. The deep sequencing approach described here could identify under-represented clones in phage screens. It could also be instrumental in developing new screening strategies, which can preserve diversity of phage clones and identify ligands previously lost in phage display screens.


Bacteriophage M13/genetics , DNA, Viral/genetics , High-Throughput Nucleotide Sequencing , Sequence Analysis, DNA , Amino Acid Sequence , Base Sequence , Cluster Analysis , Consensus Sequence , DNA, Viral/isolation & purification , Genetic Vectors , Molecular Sequence Data , Oligonucleotides/genetics , Oligonucleotides/isolation & purification , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Library , Software
16.
ACS Chem Biol ; 7(9): 1482-7, 2012 Sep 21.
Article En | MEDLINE | ID: mdl-22725642

Phage display is a powerful technology that enables the discovery of peptide ligands for many targets. Chemical modification of phage libraries have allowed the identification of ligands with properties not encountered in natural polypeptides. In this report, we demonstrated the synthesis of 2 × 10(8) genetically encoded glycopeptides from a commercially available phage-displayed peptide library (Ph.D.-7) in a two-step, one-pot reaction in <1.5 h. Unlike previous reports, we bypassed genetic engineering of phage. The glycan moiety was introduced via an oxime ligation following oxidation of an N-terminal Ser/Thr; these residues are present in the peptide libraries at 20-30% abundance. The construction of libraries was facilitated by simple characterization, which directly assessed the yield and regioselectivity of chemical reactions performed on phage. This quantification method also allowed facile yield determination of reactions in 10(9) distinct molecules. We envision that the methodology described herein will find broad application in the synthesis of custom chemically modified phage libraries.


Bacteriophage M13/chemistry , Glycopeptides/chemical synthesis , Oximes/chemistry , Peptide Library , Bacteriophage M13/genetics , Glycopeptides/genetics , Oxidation-Reduction , Polysaccharides/chemistry
17.
J Nat Prod ; 73(11): 1858-62, 2010 Nov 29.
Article En | MEDLINE | ID: mdl-20954721

Acetylcholinesterase (AChE) inhibition-directed phytochemical studies on the methanolic extract of Buxus natalensis, collected in South Africa, resulted in the isolation of 12 compounds: O(2)-natafuranamine (1), O(10)-natafuranamine (2), cyclonataminol (3), 31-demethylbuxaminol A (4), buxaminol A (5), buxafuranamide (6), buxalongifolamidine (7), buxamine A (8), cyclobuxophylline K (9), buxaminol C (10), methyl syringate (11), and p-coumaroylputrescine (12). Compounds 1-4 were new alkaloids, and compound 5 was isolated for the first time as a natural product. Their structures were elucidated with the aid of extensive NMR and mass spectroscopic studies. Compounds 1 and 2 are members of a rarely occurring class of Buxus alkaloids, having a tetrahydrofuran ring incorporated in their structures. Compounds 1-12 exhibited strong to moderate AChE inhibitory activity.


Alkaloids/isolation & purification , Alkaloids/pharmacology , Buxus/chemistry , Cholinesterase Inhibitors/isolation & purification , Cholinesterase Inhibitors/pharmacology , Plants, Medicinal/chemistry , Triterpenes/isolation & purification , Triterpenes/pharmacology , Alkaloids/chemistry , Cholinesterase Inhibitors/chemistry , Dose-Response Relationship, Drug , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , South Africa , Triterpenes/chemistry
...