Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Materials (Basel) ; 16(23)2023 Nov 24.
Article En | MEDLINE | ID: mdl-38068069

Composite materials are used in a substantial number of products. Environmental concerns highlight the need for the inclusion of recovered waste in their formulation, thus reducing their carbon footprint. These solutions raise the need to confirm the mechanical characteristics of these materials, avoiding unwanted failures. In this work, the authors present an experimental study on the drilling effects on fibrous-particulate hybrid composites made of glass/carbon fabrics and three different micro-inclusions: silica particles, recycled carbon fibre powder and cement. The mechanical features of the plates are confirmed by thrust force monitoring during drilling and by flexural testing. The range of results confirm the mechanical outcomes due to machining. The plates with monolithic carbon fabric or with carbon fabric plies in the outer plies returned higher mechanical characteristics. The plates with micro-inclusions had enhanced the flexural strength by 23% and 10%, in 40% and 60% fabric plates, respectively. The results demonstrate that the use of alternative formulations with micro-inclusions from recovered waste can contribute both to the reduction of the mechanical degradation of drilled hybrid composites and to environmental purposes by avoiding the increase in landfill waste.

2.
Materials (Basel) ; 16(7)2023 Mar 28.
Article En | MEDLINE | ID: mdl-37048981

Fiber reinforced composites are widely used in the production of parts for load bearing structures. It is generally recognized that composites can be affected both by monotonic and cyclic loading. For assembly purposes, drilling is needed, but holes can act as stress concentration notches, leading to damage propagation and failure. In this work, a batch of carbon/epoxy plates is drilled by different drill geometries, while thrust force is monitored and the hole's surrounding region is inspected. Based on radiographic images, the area and other features of the damaged region are computed for damage assessment. Finally, the specimens are subjected to Bearing Fatigue tests. Cyclic loading causes ovality of the holes and the loss of nearly 10% of the bearing net strength. These results can help to establish an association between the damaged region and the material's fatigue resistance, as larger damage extension and deformation by cyclic stress contribute to the loss of load carrying capacity of parts.

...