Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
STAR Protoc ; 2(2): 100580, 2021 06 18.
Article En | MEDLINE | ID: mdl-34151300

We describe a CRISPR inhibition (CRISPRi) protocol to repress endogenous gene expression (e.g., ATP6V1A) in human induced pluripotent stem cell-derived NGN2-induced glutamatergic neurons. CRISPRi enables efficient and precise gene repression of one or multiple target genes via delivering gRNA(s) to direct a dCas9-KRAB fusion protein to the gene(s) of interest. This protocol can also be adapted for gene activation and high-throughput gene manipulation, allowing assessment of the transcriptomic and phenotypic impact of candidate gene(s) associated with neurodevelopment or brain disease. For complete details on the use and execution of this protocol, please refer to Ho et al. (2017) and Wang et al. (2021).


CRISPR-Cas Systems , Gene Expression Regulation , Induced Pluripotent Stem Cells/metabolism , Nerve Tissue Proteins/genetics , Neurons/metabolism , Humans , Neurons/cytology , Transcriptome
2.
Mol Cell Neurosci ; 107: 103532, 2020 09.
Article En | MEDLINE | ID: mdl-32712198

Neuropsychiatric disorders are highly heritable polygenic disorders arising from the complex interplay of highly penetrant rare variants and common variants of small effect. There is a large index of comorbidity and shared genetic risk between disorders, reflecting the pleiotropy of individual variants as well as predicted downstream pathway-level convergence. Importantly, the mechanism(s) through which psychiatric disease-associated variants interact to contribute to disease risk remains unknown. Human induced pluripotent stem cell (hiPSC)-based models are increasingly useful for the systematic study of the complex genetics associated with brain diseases, particularly when combined with CRISPR-mediated genomic engineering, which together facilitate isogenic comparisons of defined neuronal cell types. In this review, we discuss the latest CRISPR technologies and consider how they can be successfully applied to the functional characterization of the growing list genetic variants linked to psychiatric disease.


Brain Diseases/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Induced Pluripotent Stem Cells/metabolism , Mental Disorders/genetics , Animals , Gene Editing/methods , Humans , Neurons/metabolism
3.
Nat Genet ; 51(10): 1475-1485, 2019 10.
Article En | MEDLINE | ID: mdl-31548722

The mechanisms by which common risk variants of small effect interact to contribute to complex genetic disorders are unclear. Here, we apply a genetic approach, using isogenic human induced pluripotent stem cells, to evaluate the effects of schizophrenia (SZ)-associated common variants predicted to function as SZ expression quantitative trait loci (eQTLs). By integrating CRISPR-mediated gene editing, activation and repression technologies to study one putative SZ eQTL (FURIN rs4702) and four top-ranked SZ eQTL genes (FURIN, SNAP91, TSNARE1 and CLCN3), our platform resolves pre- and postsynaptic neuronal deficits, recapitulates genotype-dependent gene expression differences and identifies convergence downstream of SZ eQTL gene perturbations. Our observations highlight the cell-type-specific effects of common variants and demonstrate a synergistic effect between SZ eQTL genes that converges on synaptic function. We propose that the links between rare and common variants implicated in psychiatric disease risk constitute a potentially generalizable phenomenon occurring more widely in complex genetic disorders.


Gene Expression Regulation , Genetic Predisposition to Disease , Induced Pluripotent Stem Cells/pathology , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Schizophrenia/genetics , Schizophrenia/pathology , CRISPR-Cas Systems , Chloride Channels/antagonists & inhibitors , Chloride Channels/genetics , Chloride Channels/metabolism , Female , Furin/antagonists & inhibitors , Furin/genetics , Furin/metabolism , Gene Editing , Genome-Wide Association Study , Humans , Induced Pluripotent Stem Cells/metabolism , Male , Monomeric Clathrin Assembly Proteins/antagonists & inhibitors , Monomeric Clathrin Assembly Proteins/genetics , Monomeric Clathrin Assembly Proteins/metabolism , SNARE Proteins/antagonists & inhibitors , SNARE Proteins/genetics , SNARE Proteins/metabolism
...