Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Cell Biol ; 223(7)2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38717338

RESUMEN

Senataxin is an evolutionarily conserved RNA-DNA helicase involved in DNA repair and transcription termination that is associated with human neurodegenerative disorders. Here, we investigated whether Senataxin loss affects protein homeostasis based on previous work showing R-loop-driven accumulation of DNA damage and protein aggregates in human cells. We find that Senataxin loss results in the accumulation of insoluble proteins, including many factors known to be prone to aggregation in neurodegenerative disorders. These aggregates are located primarily in the nucleolus and are promoted by upregulation of non-coding RNAs expressed from the intergenic spacer region of ribosomal DNA. We also map sites of R-loop accumulation in human cells lacking Senataxin and find higher RNA-DNA hybrids within the ribosomal DNA, peri-centromeric regions, and other intergenic sites but not at annotated protein-coding genes. These findings indicate that Senataxin loss affects the solubility of the proteome through the regulation of transcription-dependent lesions in the nucleus and the nucleolus.


Asunto(s)
ADN Helicasas , Enzimas Multifuncionales , ARN Helicasas , ARN no Traducido , Humanos , Nucléolo Celular/metabolismo , Nucléolo Celular/genética , Daño del ADN , ADN Helicasas/metabolismo , ADN Helicasas/genética , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Enzimas Multifuncionales/metabolismo , Enzimas Multifuncionales/genética , Agregado de Proteínas , Proteostasis , Estructuras R-Loop/genética , ARN Helicasas/metabolismo , ARN Helicasas/genética , ARN no Traducido/genética , ARN no Traducido/metabolismo
2.
J Am Soc Mass Spectrom ; 35(6): 1063-1068, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38748611

RESUMEN

Bortezomib, a small dipeptide-like molecule, is a proteasome inhibitor used widely in the treatment of myeloma and lymphoma. This molecule reacts with threonine side chains near the center of the 20S proteasome and disrupts proteostasis by blocking enzymatic sites that are responsible for protein degradation. In this work, we use novel mass-spectrometry-based techniques to examine the influence of bortezomib on the structures and stabilities of the 20S core particle. These studies indicate that bortezomib binding dramatically favors compact 20S structures (in which the axial gate is closed) over larger structures (in which the axial gate is open)─suppressing gate opening by factors of at least ∼400 to 1300 over the temperature range that is studied. Thus, bortezomib may also restrict degradation in the 20S proteasome by preventing substrates from entering the catalytic pore. That bortezomib influences structures at the entrance region of the pore at such a long distance (∼65 to 75 Å) from its binding sites raises a number of interesting biophysical issues.


Asunto(s)
Bortezomib , Complejo de la Endopetidasa Proteasomal , Inhibidores de Proteasoma , Bortezomib/farmacología , Bortezomib/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Inhibidores de Proteasoma/química , Inhibidores de Proteasoma/farmacología , Modelos Moleculares , Conformación Proteica/efectos de los fármacos , Humanos
4.
Anal Chem ; 95(33): 12209-12215, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37552619

RESUMEN

Charge detection mass spectrometry (CDMS) was examined as a means of studying proteasomes. To this end, the following masses of the 20S, 19S, 26S, and 30S proteasomes from Saccharomyces cerevisiae (budding yeast) were measured: m(20S) = 738.8 ± 2.9 kDa, m(19S) = 926.2 ± 4.8 kDa, m(26S) = 1,637.0 ± 7.6 kDa, and m(30S) = 2,534.2 ± 10.8 kDa. Under some conditions, larger (20S)x (where x = 1 to ∼13) assemblies are observed; the 19S regulatory particle also oligomerizes, but to a lesser extent, forming (19S)x complexes (where x = 1 to 4, favoring the x = 3 trimer). The (20S)x oligomers are favored in vitro, as the pH of the solution is lowered (from 7.0 to 5.4, in a 20 mM ammonium acetate solution) and may be related to in vivo proteasome storage granules that are observed under carbon starvation. From measurements of m(20S)x (x = 1 to ∼13) species, it appears that each multimer retains all 28 proteins of the 20S complex subunit. Several types of structures that might explain the formation of (20S)x assemblies are considered. We stress that each structural type [hypothetical planar, raft-like geometries (where individual proteasomes associate through side-by-side interactions); elongated, rodlike geometries (where subunits are bound end-to-end); and geometries that are roughly spherical (arising from aggregation through nonspecific subunit interactions)] is highly speculative but still interesting to consider, and a short discussion is provided. The utility of CDMS for characterizing proteasomes and related oligomers is discussed.


Asunto(s)
Espectrometría de Masas , Complejo de la Endopetidasa Proteasomal/química , Espectrometría de Masas/instrumentación , Espectrometría de Masas/métodos , Modelos Moleculares , Concentración de Iones de Hidrógeno , Saccharomyces cerevisiae/química
5.
bioRxiv ; 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37609285

RESUMEN

Proteins are typically targeted to the proteasome for degradation through the attachment of ubiquitin chains and the proteasome initiates degradation at a disordered region within the target protein. Yet some proteins with ubiquitin chains and disordered regions escape degradation. Here we investigate how the position of the ubiquitin chain on the target protein relative to the disordered region modulates degradation and show that the distance between the two determines whether a protein is degraded efficiently. This distance depends on the type of the degradation tag and is likely a result of the separation on the proteasome between the receptor that binds the tag and the site that engages the disordered region.

6.
J Phys Chem Lett ; 14(21): 5014-5017, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37224454

RESUMEN

Mass spectrometry studies of the stability of the S. cerevisiae 20S proteasome from 11 to 55 °C reveal a series of related configurations and coupled transitions that appear to be associated with opening of the proteolytic core. We find no evidence for dissociation, and all transitions are reversible. A thermodynamic analysis indicates that configurations fall into three general types of structures: enthalpically stabilized, tightly closed (observed as the +54 to +58 charge states) configurations; high-entropy (+60 to +66) states that are proposed as precursors to pore opening; and larger (+70 to +79) partially and fully open pore structures. In the absence of the 19S regulatory unit, the mechanism for opening the 20S pore appears to involve a charge-priming process that loosens the closed-pore configuration. Only a small fraction (≤2%) of these 20S precursor configurations appear to open and thus expose the catalytic cavity.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Saccharomyces cerevisiae , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteolisis
7.
BMC Infect Dis ; 22(1): 672, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35931971

RESUMEN

BACKGROUND: Factors that lead to successful SARS-CoV-2 transmission are still not well described. We investigated the association between a case's viral load and the risk of transmission to contacts in the context of other exposure-related factors. METHODS: Data were generated through routine testing and contact tracing at a large university. Case viral loads were obtained from cycle threshold values associated with a positive polymerase chain reaction test result from October 1, 2020 to April 15, 2021. Cases were included if they had at least one contact who tested 3-14 days after the exposure. Case-contact pairs were formed by linking index cases with contacts. Chi-square tests were used to evaluate differences in proportions of contacts testing positive. Generalized estimating equation models with a log link were used to evaluate whether viral load and other exposure-related factors were associated with a contact testing positive. RESULTS: Median viral load among the 212 cases included in the study was 5.6 (1.8-10.4) log10 RNA copies per mL of saliva. Among 365 contacts, 70 (19%) tested positive following their exposure; 36 (51%) were exposed to a case that was asymptomatic or pre-symptomatic on the day of exposure. The proportion of contacts that tested positive increased monotonically with index case viral load (12%, 23% and 25% corresponding to < 5, 5-8 and > 8 log10 copies per mL, respectively; X2 = 7.18, df = 2, p = 0.03). Adjusting for cough, time between test and exposure, and physical contact, the risk of transmission to a close contact was significantly associated with viral load (RR = 1.27, 95% CI 1.22-1.32). CONCLUSIONS: Further research is needed to understand whether these relationships persist for newer variants. For those variants whose transmission advantage is mediated through a high viral load, public health measures could be scaled accordingly. Index cases with higher viral loads could be prioritized for contact tracing and recommendations to quarantine contacts could be made according to the likelihood of transmission based on risk factors such as viral load.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Trazado de Contacto , Humanos , Cuarentena , Carga Viral
8.
Protein Sci ; 31(3): 556-567, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34878680

RESUMEN

The proteasome is a powerful intracellular protease that can degrade effectively any protein, self or foreign, for regulation, quality control, or immune response. Proteins are targeted for degradation by localizing them to the proteasome, typically by ubiquitin tags. At the same time, the proteasome is built from ~33 subunits, and their assembly into the complex and activity are tuned by post-translational modifications on long disordered regions on the subunits. Molecular modeling and biochemical experiments show that some of the disordered regions of proteasomal subunits can access the substrate recognition sites. All disordered regions tested, independent of location, are constructed from amino acid sequences that escape recognition. Replacing a disordered region with a sequence that is recognized by the proteasome leads to self-degradation and, in the case of an essential subunit, cell death.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Ubiquitina , Complejo de la Endopetidasa Proteasomal/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas/química , Proteolisis , Ubiquitina/metabolismo
9.
J Cell Biol ; 220(7)2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34003252

RESUMEN

The histone demethylase KDM5A erases histone H3 lysine 4 methylation, which is involved in transcription and DNA damage responses (DDRs). While DDR functions of KDM5A have been identified, how KDM5A recognizes DNA lesion sites within chromatin is unknown. Here, we identify two factors that act upstream of KDM5A to promote its association with DNA damage sites. We have identified a noncanonical poly(ADP-ribose) (PAR)-binding region unique to KDM5A. Loss of the PAR-binding region or treatment with PAR polymerase (PARP) inhibitors (PARPi's) blocks KDM5A-PAR interactions and DNA repair functions of KDM5A. The histone variant macroH2A1.2 is also specifically required for KDM5A recruitment and function at DNA damage sites, including homology-directed repair of DNA double-strand breaks and repression of transcription at DNA breaks. Overall, this work reveals the importance of PAR binding and macroH2A1.2 in KDM5A recognition of DNA lesion sites that drive transcriptional and repair activities at DNA breaks within chromatin that are essential for maintaining genome integrity.


Asunto(s)
ADN/genética , Histonas/genética , Reparación del ADN por Recombinación/genética , Proteína 2 de Unión a Retinoblastoma/genética , Cromatina/genética , Roturas del ADN de Doble Cadena , Daño del ADN , Humanos , Poli Adenosina Difosfato Ribosa/genética , Poli(ADP-Ribosa) Polimerasas/genética
10.
Curr Opin Struct Biol ; 67: 161-169, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33296738

RESUMEN

The majority of regulated protein degradation in eukaryotes is accomplished by the 26S proteasome, the large proteolytic complex responsible for removing regulatory proteins and damaged proteins. Proteins are targeted to the proteasome by ubiquitination, and degradation is initiated at a disordered region within the protein. The ability of the proteasome to precisely select which proteins to break down is necessary for cellular functioning. Recent studies reveal the subtle mechanisms of substrate recognition by the proteasome - diverse ubiquitin chains can act as potent proteasome targeting signals, ubiquitin receptors function uniquely and cooperatively, and modification of initiation regions modulate degradation. Here, we summarize recent findings illuminating the nature of substrate recognition by the proteasome.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Ubiquitina , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Ubiquitina/metabolismo , Ubiquitinación
11.
J Proteome Res ; 19(7): 2758-2771, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32496805

RESUMEN

Multiple ion fragmentation methods involving collision-induced dissociation (CID), higher-energy collisional dissociation (HCD) with regular and very high energy settings, and electron-transfer dissociation with supplementary HCD (EThcD) are implemented to improve the confidence of cross-link identifications. Three different S. cerevisiae proteasome samples cross-linked by diethyl suberthioimidate (DEST) or bis(sulfosuccinimidyl)suberate (BS3) are analyzed. Two approaches are introduced to combine interpretations from the above four methods. Working with cleavable cross-linkers such as DEST, the first approach searches for cross-link diagnostic ions and consistency among the best interpretations derived from all four MS2 spectra associated with each precursor ion. Better agreement leads to a more definitive identification. Compatible with both cleavable and noncleavable cross-linkers such as BS3, the second approach multiplies scoring metrics from a number of fragmentation experiments to derive an overall best match. This significantly increases the scoring gap between the target and decoy matches. The validity of cross-links fragmented by HCD alone and identified by Kojak, MeroX, pLink, and Xi was evaluated using multiple fragmentation data. Possible ways to improve the identification credibility are discussed. Data are available via ProteomeXchange with identifier PXD018310.


Asunto(s)
Péptidos , Saccharomyces cerevisiae , Algoritmos , Reactivos de Enlaces Cruzados , Iones , Espectrometría de Masas en Tándem
12.
Nat Commun ; 11(1): 2019, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32332747

RESUMEN

Retinoblastoma protein (Rb) is a tumor suppressor that binds and represses E2F transcription factors. In cervical cancer cells, human papilloma virus (HPV) protein E7 binds to Rb, releasing it from E2F to promote cell cycle progression, and inducing ubiquitination of Rb. E7-mediated proteasomal degradation of Rb requires action by another protease, calpain, which cleaves Rb after Lys 810. However, it is not clear why cleavage is required for Rb degradation. Here, we report that the proteasome cannot initiate degradation efficiently on full-length Rb. Calpain cleavage exposes a region that is recognized by the proteasome, leading to rapid proteolysis of Rb. These findings identify a mechanism for regulating protein stability by controlling initiation and provide a better understanding of the molecular mechanism underlying transformation by HPV.


Asunto(s)
Calpaína/metabolismo , Factores de Transcripción E2F/genética , Regulación Neoplásica de la Expresión Génica , Proteínas E7 de Papillomavirus/metabolismo , Proteínas de Unión a Retinoblastoma/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Neoplasias del Cuello Uterino/genética , Acrilatos/farmacología , Calpaína/antagonistas & inhibidores , Ciclo Celular/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Ciclopentanos/farmacología , Factores de Transcripción E2F/metabolismo , Femenino , Células HEK293 , Papillomavirus Humano 16/metabolismo , Papillomavirus Humano 16/patogenicidad , Humanos , Proteína NEDD8/antagonistas & inhibidores , Proteína NEDD8/metabolismo , Oligopéptidos/farmacología , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Estabilidad Proteica/efectos de los fármacos , Pirimidinas/farmacología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Unión a Retinoblastoma/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/efectos de los fármacos , Ubiquitinación/genética , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/virología
13.
Nat Commun ; 11(1): 477, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31980598

RESUMEN

Proteins are targeted to the proteasome by the attachment of ubiquitin chains, which are markedly varied in structure. Three proteasome subunits-Rpn10, Rpn13, and Rpn1-can recognize ubiquitin chains. Here we report that proteins with single chains of K48-linked ubiquitin are targeted for degradation almost exclusively through binding to Rpn10. Rpn1 can act as a co-receptor with Rpn10 for K63 chains and for certain other chain types. Differences in targeting do not correlate with chain affinity to receptors. Surprisingly, in steady-state assays Rpn13 retarded degradation of various single-chain substrates. Substrates with multiple short ubiquitin chains can be presented for degradation by any of the known receptors, whereas those targeted to the proteasome through a ubiquitin-like domain are degraded most efficiently when bound by Rpn13 or Rpn1. Thus, the proteasome provides an unexpectedly versatile binding platform that can recognize substrates targeted for degradation by ubiquitin chains differing greatly in length and topology.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/química , Ubiquitina/metabolismo , Sitios de Unión , Cinética , Modelos Moleculares , Complejo de la Endopetidasa Proteasomal/genética , Subunidades de Proteína , Proteolisis , Proteínas de Saccharomyces cerevisiae/genética , Especificidad por Sustrato , Ubiquitina/genética
14.
Protein Sci ; 28(7): 1222-1232, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31074920

RESUMEN

Proteins in the cell have to be eliminated once their function is no longer desired or they become damaged. Most regulated protein degradation is achieved by a large enzymatic complex called the proteasome. Many proteasome substrates are targeted for degradation by the covalent attachment of ubiquitin molecules. Ubiquitinated proteins can be bound by the proteasome, but for proteolysis to occur the proteasome needs to find a disordered tail somewhere in the target at which it initiates degradation. The initiation step contributes to the specificity of proteasomal degradation. Here, we review how the proteasome selects initiation sites within its substrates and discuss how the initiation step affects physiological processes.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Animales , Humanos , Especificidad por Sustrato , Ubiquitina/metabolismo
15.
Nat Chem Biol ; 15(3): 210-212, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30770910
16.
Methods Mol Biol ; 1844: 321-341, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30242719

RESUMEN

We developed a degradation assay based on fluorescent protein substrates that are efficiently recognized, unfolded, translocated, and hydrolyzed by the proteasome. The substrates consist of three components: a proteasome-binding tag, a folded domain, and an initiation region. All the components of the model substrate can be changed to modulate degradation, and the assay can be performed in parallel in 384-well plates. These properties allow the assay to be used to explore a wide range of experimental conditions and to screen proteasome modulators.


Asunto(s)
Bioensayo , Complejo de la Endopetidasa Proteasomal/metabolismo , Bioensayo/métodos , Cromatografía de Afinidad , Humanos , Técnicas In Vitro , Cinética , Modelos Moleculares , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/aislamiento & purificación , Unión Proteica , Conformación Proteica , Proteolisis , Especificidad por Sustrato , Ubiquitina/metabolismo
17.
Annu Rev Biophys ; 46: 149-173, 2017 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-28301771

RESUMEN

The ubiquitin proteasome system controls the concentrations of regulatory proteins and removes damaged and misfolded proteins from cells. Proteins are targeted to the protease at the center of this system, the proteasome, by ubiquitin tags, but ubiquitin is also used as a signal in other cellular processes. Specificity is conferred by the size and structure of the ubiquitin tags, which are recognized by receptors associated with the different cellular processes. However, the ubiquitin code remains ambiguous, and the same ubiquitin tag can target different proteins to different fates. After binding substrate protein at the ubiquitin tag, the proteasome initiates degradation at a disordered region in the substrate. The proteasome has pronounced preferences for the initiation site, and its recognition represents a second component of the degradation signal.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas/metabolismo , Humanos , Modelos Moleculares , Complejo de la Endopetidasa Proteasomal/genética , Unión Proteica , Proteínas/química , Proteínas/genética , Ubiquitina/metabolismo , Ubiquitinación
18.
mBio ; 8(2)2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28351922

RESUMEN

Multiple pathogens, including viruses and bacteria, manipulate endoplasmic reticulum-associated degradation (ERAD) to avoid the host immune response and promote their replication. The betaretrovirus mouse mammary tumor virus (MMTV) encodes Rem, which is a precursor protein that is cleaved into a 98-amino-acid signal peptide (SP) and a C-terminal protein (Rem-CT). SP uses retrotranslocation for ER membrane extraction and yet avoids ERAD by an unknown mechanism to enter the nucleus and function as a Rev-like protein. To determine how SP escapes ERAD, we used a ubiquitin-activated interaction trap (UBAIT) screen to trap and identify transient protein interactions with SP, including the ERAD-associated p97 ATPase, but not E3 ligases or Derlin proteins linked to retrotranslocation, polyubiquitylation, and proteasomal degradation of extracted proteins. A dominant negative p97 ATPase inhibited both Rem and SP function. Immunoprecipitation experiments indicated that Rem, but not SP, is polyubiquitylated. Using both yeast and mammalian expression systems, linkage of a ubiquitin-like domain (UbL) to SP or Rem induced degradation by the proteasome, whereas SP was stable in the absence of the UbL. ERAD-associated Derlin proteins were not required for SP activity. Together, these results suggested that Rem uses a novel p97-dependent, Derlin-independent retrotranslocation mechanism distinct from other pathogens to avoid SP ubiquitylation and proteasomal degradation.IMPORTANCE Bacterial and viral infections produce pathogen-specific proteins that interfere with host functions, including the immune response. Mouse mammary tumor virus (MMTV) is a model system for studies of human complex retroviruses, such as HIV-1, as well as cancer induction. We have shown that MMTV encodes a regulatory protein, Rem, which is cleaved into an N-terminal signal peptide (SP) and a C-terminal protein (Rem-CT) within the endoplasmic reticulum (ER) membrane. SP function requires ER membrane extraction by retrotranslocation, which is part of a protein quality control system known as ER-associated degradation (ERAD) that is essential to cellular health. Through poorly understood mechanisms, certain pathogen-derived proteins are retrotranslocated but not degraded. We demonstrate here that MMTV SP retrotranslocation from the ER membrane avoids degradation through a unique process involving interaction with cellular p97 ATPase and failure to acquire cellular proteasome-targeting sequences.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Evasión Inmune , Virus del Tumor Mamario del Ratón/inmunología , Virus del Tumor Mamario del Ratón/fisiología , Proteínas Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Señales de Clasificación de Proteína , Proteínas Virales/metabolismo , Línea Celular , Humanos , Proteínas de la Membrana/metabolismo , Transporte de Proteínas , Proteolisis
19.
Anal Biochem ; 509: 50-59, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27296635

RESUMEN

The 26S proteasome is the molecular machine at the center of the ubiquitin proteasome system and is responsible for adjusting the concentrations of many cellular proteins. It is a drug target in several human diseases, and assays for the characterization of modulators of its activity are valuable. The 26S proteasome consists of two components: a core particle, which contains the proteolytic sites, and regulatory caps, which contain substrate receptors and substrate processing enzymes, including six ATPases. Current high-throughput assays of proteasome activity use synthetic fluorogenic peptide substrates that report directly on the proteolytic activity of the proteasome, but not on the activities of the proteasome caps that are responsible for protein recognition and unfolding. Here, we describe a simple and robust assay for the activity of the entire 26S proteasome using fluorescence anisotropy to follow the degradation of fluorescently labeled protein substrates. We describe two implementations of the assay in a high-throughput format and show that it meets the expected requirement of ATP hydrolysis and the presence of a canonical degradation signal or degron in the target protein.


Asunto(s)
Polarización de Fluorescencia/métodos , Colorantes Fluorescentes/química , Complejo de la Endopetidasa Proteasomal/química , Proteolisis , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Humanos
20.
EMBO J ; 35(14): 1522-36, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27234297

RESUMEN

Ubiquitin and some of its homologues target proteins to the proteasome for degradation. Other ubiquitin-like domains are involved in cellular processes unrelated to the proteasome, and proteins containing these domains remain stable in the cell. We find that the 10 yeast ubiquitin-like domains tested bind to the proteasome, and that all 11 identified domains can target proteins for degradation. Their apparent proteasome affinities are not directly related to their stabilities or functions. That is, ubiquitin-like domains in proteins not part of the ubiquitin proteasome system may bind the proteasome more tightly than domains in proteins that are bona fide components. We propose that proteins with ubiquitin-like domains have properties other than proteasome binding that confer stability. We show that one of these properties is the absence of accessible disordered regions that allow the proteasome to initiate degradation. In support of this model, we find that Mdy2 is degraded in yeast when a disordered region in the protein becomes exposed and that the attachment of a disordered region to Ubp6 leads to its degradation.


Asunto(s)
Endopeptidasas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina/química , Ubiquitina/metabolismo , Unión Proteica , Conformación Proteica , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA