Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Front Immunol ; 15: 1421175, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091492

RESUMEN

Age-related macular degeneration (AMD), a prevalent and progressive degenerative disease of the macula, is the leading cause of blindness in elderly individuals in developed countries. The advanced stages include neovascular AMD (nAMD), characterized by choroidal neovascularization (CNV), leading to subretinal fibrosis and permanent vision loss. Despite the efficacy of anti-vascular endothelial growth factor (VEGF) therapy in stabilizing or improving vision in nAMD, the development of subretinal fibrosis following CNV remains a significant concern. In this review, we explore multifaceted aspects of subretinal fibrosis in nAMD, focusing on its clinical manifestations, risk factors, and underlying pathophysiology. We also outline the potential sources of myofibroblast precursors and inflammatory mechanisms underlying their recruitment and transdifferentiation. Special attention is given to the potential role of mast cells in CNV and subretinal fibrosis, with a focus on putative mast cell mediators, tryptase and granzyme B. We summarize our findings on the role of GzmB in CNV and speculate how GzmB may be involved in the pathological transition from CNV to subretinal fibrosis in nAMD. Finally, we discuss the advantages and drawbacks of animal models of subretinal fibrosis and pinpoint potential therapeutic targets for subretinal fibrosis.


Asunto(s)
Fibrosis , Granzimas , Degeneración Macular , Humanos , Animales , Degeneración Macular/patología , Degeneración Macular/metabolismo , Degeneración Macular/etiología , Granzimas/metabolismo , Retina/patología , Retina/metabolismo , Retina/inmunología , Mastocitos/inmunología , Mastocitos/metabolismo , Neovascularización Coroidal/patología , Neovascularización Coroidal/metabolismo
2.
Opt Lett ; 49(15): 4314-4317, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090922

RESUMEN

The results of depth-resolved multi-contrast in vivo mouse choroidal imaging using a polarization-diversity optical coherence tomography (PD-OCT) system are presented. A selectively chosen depth of focus that was fine-tuned with a sensorless adaptive optics technique and a simple segmentation based on the degree of polarization uniformity signal visualizes the detailed features of a mouse choroid from the OCT angiography images. A comprehensive image analysis of the choroid revealed the distinctive pathological characteristics of the laser-induced choroidal neovascularization mouse.


Asunto(s)
Coroides , Neovascularización Coroidal , Tomografía de Coherencia Óptica , Animales , Tomografía de Coherencia Óptica/métodos , Coroides/diagnóstico por imagen , Ratones , Neovascularización Coroidal/diagnóstico por imagen
3.
Trends Mol Med ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39181801

RESUMEN

Aging is a major risk factor for pathologies that manifest later in life. Much attention is devoted towards elucidating how prolonged environmental exposures and inflammation promote biological (accelerated) tissue aging. Granzymes, a family of serine proteases, are increasingly recognized for their emerging roles in biological aging and disease. Widely recognized as intracellular mediators of cell death, granzymes, particularly granzyme B (GzmB), also accumulate in the extracellular milieu of tissues with age, contributing to chronic tissue injury, inflammation, and impaired healing. Consequently, this has prompted the field to reconsider how GzmB regulation, accumulation, and proteolysis impact health and disease with age. While GzmB is observed in numerous age-related conditions, the current review focuses on mechanistic studies where proof-of-concept has been forwarded.

4.
Sci Rep ; 14(1): 16086, 2024 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-38992064

RESUMEN

The classical amyloid cascade hypothesis postulates that the aggregation of amyloid plaques and the accumulation of intracellular hyperphosphorylated Tau tangles, together, lead to profound neuronal death. However, emerging research has demonstrated that soluble amyloid-ß oligomers (SAßOs) accumulate early, prior to amyloid plaque formation. SAßOs induce memory impairment and disrupt cognitive function independent of amyloid-ß plaques, and even in the absence of plaque formation. This work describes the development and characterization of a novel anti-SAßO (E3) nanobody generated from an alpaca immunized with SAßO. In-vitro assays and in-vivo studies using 5XFAD mice indicate that the fluorescein (FAM)-labeled E3 nanobody recognizes both SAßOs and amyloid-ß plaques. The E3 nanobody traverses across the blood-brain barrier and binds to amyloid species in the brain of 5XFAD mice. Imaging of mouse brains reveals that SAßO and amyloid-ß plaques are not only different in size, shape, and morphology, but also have a distinct spatial distribution in the brain. SAßOs are associated with neurons, while amyloid plaques reside in the extracellular matrix. The results of this study demonstrate that the SAßO nanobody can serve as a diagnostic agent with potential theragnostic applications in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Placa Amiloide , Anticuerpos de Dominio Único , Animales , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/inmunología , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/química , Ratones , Placa Amiloide/metabolismo , Enfermedad de Alzheimer/metabolismo , Humanos , Encéfalo/metabolismo , Encéfalo/patología , Barrera Hematoencefálica/metabolismo , Ratones Transgénicos , Camélidos del Nuevo Mundo , Modelos Animales de Enfermedad
6.
ACS Sens ; 9(5): 2605-2613, 2024 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-38718161

RESUMEN

Several new lines of research have demonstrated that a significant number of amyloid-ß peptides found in Alzheimer's disease (AD) are truncated and undergo post-translational modification by glutaminyl cyclase (QC) at the N-terminal. Notably, QC's products of Abeta-pE3 and Abeta-pE11 have been active targets for investigational drug development. This work describes the design, synthesis, characterization, and in vivo validation of a novel PET radioligand, [18F]PB0822, for targeted imaging of QC. We report herein a simplified and robust chemistry for the synthesis of the standard compound, [19F]PB0822, and the corresponding [18F]PB0822 radioligand. The PET probe was developed with 99.9% radiochemical purity, a molar activity of 965 Ci.mmol-1, and an IC50 of 56.3 nM, comparable to those of the parent PQ912 inhibitor (62.5 nM). Noninvasive PET imaging showed that the probe is distributed in the brain 5 min after intravenous injection. Further, in vivo PET imaging with [18F]PB0822 revealed that AD 5XFAD mice harbor significantly higher QC activity than WT counterparts. The data also suggested that QC activity is found across different brain regions of the tested animals.


Asunto(s)
Enfermedad de Alzheimer , Aminoaciltransferasas , Tomografía de Emisión de Positrones , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Tomografía de Emisión de Positrones/métodos , Aminoaciltransferasas/metabolismo , Aminoaciltransferasas/antagonistas & inhibidores , Animales , Ratones , Radioisótopos de Flúor/química , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/enzimología , Radiofármacos/química , Radiofármacos/síntesis química , Biomarcadores/metabolismo , Humanos , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/análisis , Ligandos
7.
J Clin Med ; 13(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38731149

RESUMEN

Background: The use of electronic cigarettes has become increasingly popular in recent years. However, the impact that electronic cigarettes have on the ocular surface is not well known. Therefore, the aim of this review is to explore the current literature on the acute and chronic sequelae of electronic cigarettes on the ocular surface. Methods: A systematic review of the literature was undertaken by keyword searching on the Embase, Medline, and Web of Science databases. Articles identified through the search underwent title/abstract screening, full-text screening, and data extraction. Results: A total of 18 studies were included in this review. Non-intended ocular surface exposures and intended exposures on the ocular surface were found to be associated with the use of electronic cigarettes. Conclusions: The impact of vaping on the ocular surface is not benign. There are significant risks that vaping can pose to the ocular surface. Hence, it is necessary to develop appropriate risk communication tools given the increasing popularity of this activity. Additionally, future long-term studies are needed to better understand the long-term impacts of vaping on the ocular surface given the lack of current data.

8.
Res Sq ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38559050

RESUMEN

The classical amyloid cascade hypothesis postulates that the aggregation of amyloid plaques and the accumulation of intracellular hyperphosphorylated Tau tangles, together, lead to profound neuronal death. However, emerging research has demonstrated that soluble amyloid-ß oligomers (SAßOs) accumulate early, prior to amyloid plaque formation. SAßOs induce memory impairment and disrupt cognitive function independent of amyloid-ß plaques, and even in the absence of plaque formation. This work describes the development and characterization of a novel anti-SAßO (E3) nanobody generated from an alpaca immunized with SAßO. In-vitro assays and in-vivo studies using 5XFAD mice indicate that the fluorescein (FAM)-labeled E3 nanobody recognizes both SAßOs and amyloid-ß plaques. The E3 nanobody traverses across the blood-brain barrier and binds to amyloid species in the brain of 5XFAD mice. Imaging of mouse brains reveals that SAßO and amyloid-ß plaques are not only different in size, shape, and morphology, but also have a distinct spatial distribution in the brain. SAßOs are associated with neurons, while amyloid plaques reside in the extracellular matrix. The results of this study demonstrate that the SAßO nanobody can serve as a diagnostic agent with potential theragnostic applications in Alzheimer's disease.

9.
Angiogenesis ; 27(3): 351-373, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38498232

RESUMEN

Age-related macular degeneration (AMD) is a common retinal neurodegenerative disease among the elderly. Neovascular AMD (nAMD), a leading cause of AMD-related blindness, involves choroidal neovascularization (CNV), which can be suppressed by anti-angiogenic treatments. However, current CNV treatments do not work in all nAMD patients. Here we investigate a novel target for AMD. Granzyme B (GzmB) is a serine protease that promotes aging, chronic inflammation and vascular permeability through the degradation of the extracellular matrix (ECM) and tight junctions. Extracellular GzmB is increased in retina pigment epithelium (RPE) and mast cells in the choroid of the healthy aging outer retina. It is further increased in donor eyes exhibiting features of nAMD and CNV. Here, we show in RPE-choroidal explant cultures that exogenous GzmB degrades the RPE-choroid ECM, promotes retinal/choroidal inflammation and angiogenesis while diminishing anti-angiogenic factor, thrombospondin-1 (TSP-1). The pharmacological inhibition of either GzmB or mast-cell degranulation significantly reduces choroidal angiogenesis. In line with our in vitro data, GzmB-deficiency reduces the extent of laser-induced CNV lesions and the age-related deterioration of electroretinogram (ERG) responses in mice. These findings suggest that targeting GzmB, a serine protease with no known endogenous inhibitors, may be a potential novel therapeutic approach to suppress CNV in nAMD.


Asunto(s)
Neovascularización Coroidal , Matriz Extracelular , Granzimas , Inflamación , Mastocitos , Epitelio Pigmentado de la Retina , Granzimas/metabolismo , Neovascularización Coroidal/metabolismo , Neovascularización Coroidal/patología , Animales , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Humanos , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Inflamación/patología , Inflamación/metabolismo , Ratones , Mastocitos/metabolismo , Mastocitos/patología , Mastocitos/enzimología , Trombospondina 1/metabolismo , Trombospondina 1/genética , Ratones Endogámicos C57BL , Coroides/patología , Coroides/metabolismo , Coroides/irrigación sanguínea , Degeneración Macular/patología , Degeneración Macular/metabolismo , Ratones Noqueados
10.
Acta Neuropathol Commun ; 12(1): 19, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38303097

RESUMEN

Excitotoxicity from the impairment of glutamate uptake constitutes an important mechanism in neurodegenerative diseases such as Alzheimer's, multiple sclerosis, and Parkinson's disease. Within the eye, excitotoxicity is thought to play a critical role in retinal ganglion cell death in glaucoma, diabetic retinopathy, retinal ischemia, and optic nerve injury, yet how excitotoxic injury impacts different retinal layers is not well understood. Here, we investigated the longitudinal effects of N-methyl-D-aspartate (NMDA)-induced excitotoxic retinal injury in a rat model using deep learning-assisted retinal layer thickness estimation. Before and after unilateral intravitreal NMDA injection in nine adult Long Evans rats, spectral-domain optical coherence tomography (OCT) was used to acquire volumetric retinal images in both eyes over 4 weeks. Ten retinal layers were automatically segmented from the OCT data using our deep learning-based algorithm. Retinal degeneration was evaluated using layer-specific retinal thickness changes at each time point (before, and at 3, 7, and 28 days after NMDA injection). Within the inner retina, our OCT results showed that retinal thinning occurred first in the inner plexiform layer at 3 days after NMDA injection, followed by the inner nuclear layer at 7 days post-injury. In contrast, the retinal nerve fiber layer exhibited an initial thickening 3 days after NMDA injection, followed by normalization and thinning up to 4 weeks post-injury. Our results demonstrated the pathological cascades of NMDA-induced neurotoxicity across different layers of the retina. The early inner plexiform layer thinning suggests early dendritic shrinkage, whereas the initial retinal nerve fiber layer thickening before subsequent normalization and thinning indicates early inflammation before axonal loss and cell death. These findings implicate the inner plexiform layer as an early imaging biomarker of excitotoxic retinal degeneration, whereas caution is warranted when interpreting the ganglion cell complex combining retinal nerve fiber layer, ganglion cell layer, and inner plexiform layer thicknesses in conventional OCT measures. Deep learning-assisted retinal layer segmentation and longitudinal OCT monitoring can help evaluate the different phases of retinal layer damage upon excitotoxicity.


Asunto(s)
Aprendizaje Profundo , Degeneración Retiniana , Ratas , Animales , Degeneración Retiniana/inducido químicamente , Degeneración Retiniana/diagnóstico por imagen , Degeneración Retiniana/patología , Tomografía de Coherencia Óptica/métodos , N-Metilaspartato/toxicidad , Ratas Long-Evans , Retina/patología , Células Ganglionares de la Retina/patología , Fibras Nerviosas/patología
11.
BMC Ophthalmol ; 23(1): 344, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537538

RESUMEN

BACKGROUND: Epiretinal membranes in patients with proliferative vitreoretinopathy (PVR) consist of extracellular matrix and a number of cell types including retinal pigment epithelial (RPE) cells and fibroblasts, whose contraction causes retinal detachment. In RPE cells depletion of platelet-derived growth factor (PDGF) receptor (PDGFR)ß suppresses vitreous-induced Akt activation, whereas in fibroblasts Akt activation through indirect activation of PDGFRα by growth factors outside the PDGF family (non-PDGFs) plays an essential role in experimental PVR. Whether non-PDGFs in the vitreous, however, were also able to activate PDGFRß in RPE cells remained elusive. METHODS: The CRISPR/Cas9 technology was utilized to edit a genomic PDGFRB locus in RPE cells derived from an epiretinal membrane (RPEM) from a patient with PVR, and a retroviral vector was used to express a truncated PDGFRß short of a PDGF-binding domain in the RPEM cells lacking PDGFRß. Western blot was employed to analyze expression of PDGFRß and α-smooth muscle actin, and signaling events (p-PDGFRß and p-Akt). Cellular assays (proliferation, migration and contraction) were also applied in this study. RESULTS: Expression of a truncated PDGFRß lacking a PDGF-binding domain in the RPEM cells whose PDGFRB gene has been silent using the CRISPR/Cas9 technology restores vitreous-induced Akt activation as well as cell proliferation, epithelial-mesenchymal transition, migration and contraction. In addition, we show that scavenging reactive oxygen species (ROS) with N-acetyl-cysteine and inhibiting Src family kinases (SFKs) with their specific inhibitor SU6656 blunt the vitreous-induced activation of the truncated PDGFRß and Akt as well as the cellular events related to the PVR pathogenesis. These discoveries suggest that in RPE cells PDGFRß can be activated indirectly by non-PDGFs in the vitreous via an intracellular pathway of ROS/SFKs to facilitate the development of PVR, thereby providing novel opportunities for PVR therapeutics. CONCLUSION: The data shown here will improve our understanding of the mechanism by which PDGFRß can be activated by non-PDGFs in the vitreous via an intracellular route of ROS/SFKs and provide a conceptual foundation for preventing PVR by inhibiting PDGFRß transactivation (ligand-independent activation).


Asunto(s)
Receptor beta de Factor de Crecimiento Derivado de Plaquetas , Vitreorretinopatía Proliferativa , Humanos , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Epitelio Pigmentado de la Retina/patología , Proteínas Proto-Oncogénicas c-akt , Ligandos , Especies Reactivas de Oxígeno/metabolismo , Vitreorretinopatía Proliferativa/genética , Vitreorretinopatía Proliferativa/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Células Epiteliales/metabolismo , Pigmentos Retinianos/metabolismo , Movimiento Celular
12.
Front Neurosci ; 17: 1216489, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37496736

RESUMEN

Age-related macular degeneration (AMD) is a chronic and progressive inflammatory disease of the retina characterized by photoceptor loss and significant central visual impairment due to either choroidal neovascularization or geographic atrophy. The pathophysiology of AMD is complex and multifactorial, driven by a combination of modifiable and non-modifiable risk factors, molecular mechanisms, and cellular processes that contribute to overall disease onset, severity, and progression. Unfortunately, due to the structural, cellular, and pathophysiologic complexity, therapeutic discovery is challenging. While purinergic signaling has been investigated for its role in the development and treatment of ocular pathologies including AMD, the potential crosstalk between known contributors to AMD, such as the complement cascade and inflammasome activation, and other biological systems, such as purinergic signaling, have not been fully characterized. In this review, we explore the interactions between purinergic signaling, ATP release, and known contributors to AMD pathogenesis including complement dysregulation and inflammasome activation. We begin by identifying what is known about purinergic receptors in cell populations of the outer retina and potential sources of extracellular ATP required to trigger purinergic receptor activation. Next, we examine evidence in the literature that the purinergic system accelerates AMD pathogenesis leading to apoptotic and pyroptotic cell death in retinal cells. To fully understand the potential role that purinergic signaling plays in AMD, more research is needed surrounding the expression, distribution, functions, and interactions of purinergic receptors within cells of the outer retina as well as potential crosstalk with other systems. By determining how these processes are affected in the context of purinergic signaling, it will improve our understanding of the mechanisms that drive AMD pathogenesis which is critical in developing treatment strategies that prevent or slow progression of the disease.

13.
Life Sci Alliance ; 6(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36941055

RESUMEN

Extracellular circulating microRNAs (miRNAs) have been discussed as potential biomarkers for Alzheimer's disease (AD) diagnosis. As the retina is a part of the CNS, we hypothesize that miRNAs expression levels in the brain, particularly neocortex-hippocampus, eye tissues, and tear fluids are similar at different stages of AD progression. Ten miRNA candidates were systematically investigated in transgenic APP-PS1 mice, noncarrier siblings, and C57BL/6J wild-type controls at young and old ages. Relative expression levels of tested miRNAs revealed a similar pattern in both APP-PS1 mice and noncarrier siblings when compared with age- and sex-matched wild-type controls. However, the differences seen in expression levels between APP-PS1 mice and noncarrier siblings could possibly have resulted from underlying molecular etiology of AD. Importantly, miRNAs associated with amyloid beta (Aß) production (-101a, -15a, and -342) and proinflammation (-125b, -146a, and -34a) showed significant up-regulations in the tear fluids with disease progression, as tracked by cortical Aß load and reactive astrogliosis. Overall, for the first time, the translational potential of up-regulated tear fluid miRNAs associated with AD pathogenesis was comprehensively demonstrated.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , MicroARNs/genética , Precursor de Proteína beta-Amiloide/genética , Ratones Endogámicos C57BL , Ratones Transgénicos
14.
Front Neurosci ; 17: 1107436, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36998724

RESUMEN

Introduction: Ergothioneine (Ergo) is a naturally occurring dietary antioxidant. Ergo uptake is dependent on the transporter, organic cation transporter novel-type 1 (OCTN1) distribution. OCTN1 is highly expressed in blood cells (myeloid lineage cells), brain and ocular tissues that are likely predisposed to oxidative stress. Ergo may protect the brain and eye against oxidative damage and inflammation, however, the underlying mechanism remains unclear. Amyloid beta (Aß) clearance is a complex process mediated by various systems and cell types including vascular transport across the blood-brain barrier, glymphatic drainage, and engulfment and degradation by resident microglia and infiltrating innate immune cells. Impaired Aß clearance is a major cause for Alzheimer's disease (AD). Here we investigated neuroretinas to explore the neuroprotective effect of Ergo in a transgenic AD mouse model. Methods: Age-matched groups of Ergo-treated 5XFAD, non-treated 5XFAD, and C57BL/6J wildtype (WT controls) were used to assess Ergo transporter OCTN1 expression and Aß load along with microglia/macrophage (IBA1) and astrocyte (GFAP) markers in wholemount neuroretinas (n = 26) and eye cross-sections (n = 18). Immunoreactivity was quantified by fluorescence or by semi-quantitative assessments. Results and discussion: OCTN1 immunoreactivity was significantly low in the eye cross-sections of Ergo-treated and non-treated 5XFAD vs. WT controls. Strong Aß labeling, detected in the superficial layers in the wholemounts of Ergo-treated 5XFAD vs. non-treated 5XFAD reflects the existence of an effective Aß clearance system. This was supported by imaging of cross-sections where Aß immunoreactivity was significantly low in the neuroretina of Ergo-treated 5XFAD vs. non-treated 5XFAD. Moreover, semi-quantitative analysis in wholemounts identified a significantly reduced number of large Aß deposits or plaques, and a significantly increased number of IBA1(+)ve blood-derived phagocytic macrophages in Ergo-treated 5XFAD vs. non-treated 5XFAD. In sum, enhanced Aß clearance in Ergo-treated 5XFAD suggests that Ergo uptake may promote Aß clearance possibly by blood-derived phagocytic macrophages and via perivascular drainage.

15.
Lab Invest ; 103(6): 100123, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36849037

RESUMEN

Age-related macular degeneration (AMD) is a leading cause of irreversible central vision loss in the elderly. The pathology of neovascular age-related macular degeneration (nAMD), also known as wet AMD, is associated with an abnormal blood vessel growth in the eye and involves an imbalance of proangiogenic and antiangiogenic factors. Thrombospondin (TSP)-1 and TSP-2 are endogenous matricellular proteins that inhibit angiogenesis. TSP-1 is significantly diminished in eyes with AMD, although the mechanisms involved in its reduction are unknown. Granzyme B (GzmB) is a serine protease with an increased extracellular activity in the outer retina and choroid of human eyes with nAMD-related choroidal neovascularization (CNV). This study investigated whether TSP-1 and TSP-2 are GzmB substrates using in silico and cell-free cleavage assays and explored the relationship between GzmB and TSP-1 in human eyes with nAMD-related CNV and the effect of GzmB on TSP-1 in retinal pigment epithelial culture and an explant choroid sprouting assay (CSA). In this study, TSP-1 and TSP-2 were identified as GzmB substrates. Cell-free cleavage assays substantiated the GzmB proteolysis of TSP-1 and TSP-2 by showing dose-dependent and time-dependent cleavage products. TSP-1 and TSP-2 proteolysis were hindered by the inhibition of GzmB. In the retinal pigment epithelium and choroid of human eyes with CNV, we observed a significant inverse correlation between TSP-1 and GzmB, as indicated by lower TSP-1 and higher GzmB immunoreactivity. In CSA, the vascular sprouting area increased significantly with GzmB treatment and reduced significantly with TSP-1 treatment. Western blot showed significantly reduced expression of TSP-1 in GzmB-treated retinal pigment epithelial cell culture and CSA supernatant compared with that in controls. Together, our findings suggest that the proteolysis of antiangiogenic factors such as TSP-1 by extracellular GzmB might represent a mechanism through which GzmB may contribute to nAMD-related CNV. Future studies are needed to investigate whether pharmacologic inhibition of extracellular GzmB can mitigate nAMD-related CNV by preserving intact TSP-1.


Asunto(s)
Neovascularización Coroidal , Degeneración Macular , Humanos , Anciano , Trombospondina 1/metabolismo , Granzimas/metabolismo , Proteolisis , Degeneración Macular/complicaciones , Degeneración Macular/metabolismo , Degeneración Macular/patología , Neovascularización Coroidal/tratamiento farmacológico , Neovascularización Coroidal/etiología , Neovascularización Coroidal/metabolismo
16.
Hum Gene Ther ; 34(1-2): 30-41, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36515172

RESUMEN

Abnormal angiogenesis is associated with myriad human diseases, including proliferative diabetic retinopathy (PDR). Signaling transduction through phosphoinositide 3-kinases (PI3Ks) plays a critical role in angiogenesis. Herein, we showed that p110δ, the catalytic subunit of PI3Kδ, was highly expressed in pathological retinal vascular endothelial cells (ECs) in a mouse model of oxygen-induced retinopathy (OIR) and in fibrovascular membranes from patients with PDR. To explore novel intervention with PI3Kδ expression, we developed a recombinant dual adeno-associated viral (rAAV) system for delivering CRISPR/Cas9 in which Streptococcus pyogenes (Sp) Cas9 expression was driven by an endothelial specific promoter of the intercellular adhesion molecule 2 (pICAM2) to edit genomic Pik3cd, the gene encoding p110δ. We then demonstrated that infection of cultured mouse vascular ECs with the dual rAAV1s of rAAV1-pICAM2-SpCas9 and rAAV1-SpGuide targeting genomic Pik3cd resulted in 80% DNA insertion/deletion in the locus of genomic Pik3cd and 70% depletion of p110δ expression. Furthermore, we showed that in the mouse model of OIR editing retinal Pik3cd with the dual rAAV1s resulted in not only a significant decrease in p110δ expression, and Akt activation, but also a dramatic reduction in pathological retinal angiogenesis. These findings reveal that Pik3cd editing is a novel approach to treating abnormal retinal angiogenesis.


Asunto(s)
Edición Génica , Enfermedades de la Retina , Humanos , Ratones , Animales , Edición Génica/métodos , Células Endoteliales/metabolismo , Células Cultivadas , Retina/metabolismo , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Enfermedades de la Retina/patología , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo
17.
PLoS One ; 17(12): e0276726, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36580473

RESUMEN

Identification of small objects in fluorescence microscopy is a non-trivial task burdened by parameter-sensitive algorithms, for which there is a clear need for an approach that adapts dynamically to changing imaging conditions. Here, we introduce an adaptive object detection method that, given a microscopy image and an image level label, uses kurtosis-based matching of the distribution of the image differential to express operator intent in terms of recall or precision. We show how a theoretical upper bound of the statistical distance in feature space enables application of belief theory to obtain statistical support for each detected object, capturing those aspects of the image that support the label, and to what extent. We validate our method on 2 datasets: distinguishing sub-diffraction limit caveolae and scaffold by stimulated emission depletion (STED) super-resolution microscopy; and detecting amyloid-ß deposits in confocal microscopy retinal cross-sections of neuropathologically confirmed Alzheimer's disease donor tissue. Our results are consistent with biological ground truth and with previous subcellular object classification results, and add insight into more nuanced class transition dynamics. We illustrate the novel application of belief theory to object detection in heterogeneous microscopy datasets and the quantification of conflict of evidence in a joint belief function. By applying our method successfully to diffraction-limited confocal imaging of tissue sections and super-resolution microscopy of subcellular structures, we demonstrate multi-scale applicability.


Asunto(s)
Algoritmos , Enfermedad de Alzheimer , Humanos , Microscopía Fluorescente/métodos , Microscopía Confocal/métodos , Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides
18.
Front Pharmacol ; 13: 980742, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204224

RESUMEN

Age-related ocular diseases are the leading cause of blindness in developed countries and constitute a sizable socioeconomic burden worldwide. Age-related macular degeneration (AMD) and Fuchs endothelial corneal dystrophy (FECD) are some of the most common age-related diseases of the retina and cornea, respectively. AMD is characterized by a breakdown of the retinal pigment epithelial monolayer, which maintains retinal homeostasis, leading to retinal degeneration, while FECD is characterized by degeneration of the corneal endothelial monolayer, which maintains corneal hydration status, leading to corneal edema. Both AMD and FECD pathogenesis are characterized by disorganized local extracellular matrix (ECM) and toxic protein deposits, with both processes linked to aberrant protease activity. Granzyme B (GrB) is a serine protease traditionally known for immune-mediated initiation of apoptosis; however, it is now recognized that GrB is expressed by a variety of immune and non-immune cells and aberrant extracellular localization of GrB substantially contributes to various age-related pathologies through dysregulated cleavage of ECM, tight junction, and adherens junction proteins. Despite growing recognition of GrB involvement in multiple age-related pathologies, its role in AMD and FECD remains poorly understood. This review summarizes the pathophysiology of, and similarities between AMD and FECD, outlines the current knowledge of the role of GrB in AMD and FECD, as well as hypothesizes putative contributions of GrB to AMD and FECD pathogenesis and highlights the therapeutic potential of pharmacologically inhibiting GrB as an adjunctive treatment for AMD and FECD.

19.
Acta Neuropathol Commun ; 10(1): 145, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36199154

RESUMEN

Amyloid beta (Aß) deposits in the retina of the Alzheimer's disease (AD) eye may provide a useful diagnostic biomarker for AD. This study focused on the relationship of Aß with macroglia and microglia, as these glial cells are hypothesized to play important roles in homeostasis and clearance of Aß in the AD retina. Significantly higher Aß load was found in AD compared to controls, and specifically in the mid-peripheral region. AD retina showed significantly less immunoreactivity against glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS) compared to control eyes. Immunoreactivity against ionized calcium binding adapter molecule-1 (IBA-1), a microglial marker, demonstrated a higher level of microgliosis in AD compared to control retina. Within AD retina, more IBA-1 immunoreactivity was present in the mid-peripheral retina, which contained more Aß than the central AD retina. GFAP co-localized rarely with Aß, while IBA-1 co-localized with Aß in more layers of control than AD donor retina. These results suggest that dysfunction of the Müller and microglial cells may be key features of the AD retina.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Calcio/metabolismo , Modelos Animales de Enfermedad , Células Ependimogliales , Proteína Ácida Fibrilar de la Glía/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo , Ratones , Ratones Transgénicos , Microglía/metabolismo , Retina/metabolismo
20.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35745661

RESUMEN

Background: Ergothioneine (ERGO) is a unique antioxidant and a rare amino acid available in fungi and various bacteria but not in higher plants or animals. Substantial research data indicate that ERGO is a physiological antioxidant cytoprotectant. Different from other antioxidants that need to breach the blood-brain barrier to enter the brain parenchyma, a specialized transporter called OCTN1 has been identified for transporting ERGO to the brain. Purpose: To assess whether consumption of ERGO can prevent the progress of Alzheimer's disease (AD) on young (4-month-old) 5XFAD mice. Methods and materials: Three cohorts of mice were tested in this study, including ERGO-treated 5XFAD, non-treated 5XFAD, and WT mice. After the therapy, the animals went through various behavioral experiments to assess cognition. Then, mice were scanned with PET imaging to evaluate the biomarkers associated with AD using [11C]PIB, [11C]ERGO, and [18F]FDG radioligands. At the end of imaging, the animals went through cardiac perfusion, and the brains were isolated for immunohistology. Results: Young (4-month-old) 5XFAD mice did not show a cognitive deficit, and thus, we observed modest improvement in the treated counterparts. In contrast, the response to therapy was clearly detected at the molecular level. Treating 5XFAD mice with ERGO resulted in reduced amyloid plaques, oxidative stress, and rescued glucose metabolism. Conclusions: Consumption of high amounts of ERGO benefits the brain. ERGO has the potential to prevent AD. This work also demonstrates the power of imaging technology to assess response during therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA