Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Cancer Sci ; 115(2): 648-659, 2024 Feb.
Article En | MEDLINE | ID: mdl-38096871

Thrombosis is a well-known cardiovascular disease (CVD) complication that has caused death in many patients with cancer. Oral bacteria have been reported to contribute to systemic diseases, including CVDs, and tumor metastasis. However, whether oral bacteria-induced thrombosis induces tumor metastasis remains poorly understood. In this study, the cariogenic oral bacterium Streptococcus mutans was used to examine thrombosis in vitro and in vivo. Investigation of tumor metastasis to the lungs was undertaken by intravenous S. mutans implantation using a murine breast cancer metastasis model. The results indicated that platelet activation, aggregation, and coagulation were significantly altered in S. mutans-stimulated endothelial cells (ECs), with elevated neutrophil migration, thereby inducing thrombosis formation. Streptococcus mutans stimulation significantly enhances platelet and tumor cell adhesion to the inflamed ECs. Furthermore, S. mutans-induced pulmonary thrombosis promotes breast cancer cell metastasis to the lungs in vivo, which can be reduced by using aspirin, an antiplatelet drug. Our findings indicate that oral bacteria promote tumor metastasis through thrombosis formation. Oral health management is important to prevent CVDs, tumor metastasis, and their associated death.


Breast Neoplasms , Thrombosis , Humans , Mice , Animals , Female , Streptococcus mutans/metabolism , Biofilms , Endothelial Cells
2.
Cancer Sci ; 113(11): 3980-3994, 2022 Nov.
Article En | MEDLINE | ID: mdl-35997541

Recent studies have demonstrated a relationship between oral bacteria and systemic inflammation. Endothelial cells (ECs), which line blood vessels, control the opening and closing of the vascular barrier and contribute to hematogenous metastasis; however, the role of oral bacteria-induced vascular inflammation in tumor metastasis remains unclear. In this study, we examined the phenotypic changes in vascular ECs following Streptococcus mutans (S. mutans) stimulation in vitro and in vivo. The expression of molecules associated with vascular inflammation and barrier-associated adhesion was analyzed. Tumor metastasis was evaluated after intravenous injection of S. mutans in murine breast cancer hematogenous metastasis model. The results indicated that S. mutans invaded the ECs accompanied by inflammation and NF-κB activation. S. mutans exposure potentially disrupts endothelial integrity by decreasing vascular endothelial (VE)-cadherin expression. The migration and adhesion of tumor cells were enhanced in S. mutans-stimulated ECs. Furthermore, S. mutans-induced lung vascular inflammation promoted breast cancer cell metastasis to the lungs in vivo. The results indicate that oral bacteria promote tumor metastasis through vascular inflammation and the disruption of vascular barrier function. Improving oral hygiene in patients with cancer is of great significance in preventing postoperative pneumonia and tumor metastasis.


Breast Neoplasms , Streptococcus mutans , Humans , Mice , Animals , Female , Streptococcus mutans/physiology , Endothelial Cells/metabolism , Signal Transduction , Inflammation/metabolism , Breast Neoplasms/metabolism
3.
Virology ; 573: 124-130, 2022 08.
Article En | MEDLINE | ID: mdl-35779334

In the adenovirus-infected cells, virus mRNAs are selectively exported to the cytoplasm by virus early gene products to facilitate virus replication. We previously showed AU-rich elements (AREs) containing mRNAs are exported to the cytoplasm and stabilized in infected cells. Here, we analyzed ribonucleoprotein (RNP) granules in the cytoplasm that are involved in mRNA degradation to elucidate the mechanism of ARE-mRNA stabilization in adenovirus infected cells. Our findings showed that processing bodies (PBs) aggregate, then almost all PBs are translocated to aggresomes formed by adenoviral gene products during the late phase of infection. Furthermore, E4orf3 was required for the PBs translocation, and the same domains of E4orf3-mutants required to change the form of promyelocytic leukemia bodies were also needed for PBs translocation. Luciferase activity showed that these domains were critical for miRNA- and ARE-mediated mRNA decay. These findings suggest that adenovirus changes the behavior of PBs to prevent ARE-mRNA downregulation.


Adenoviridae Infections , Processing Bodies , Adenoviridae/genetics , Adenoviridae/metabolism , Adenoviridae Infections/metabolism , Cytoplasm/metabolism , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , Viral Proteins/metabolism , Virus Replication/genetics
4.
Oncol Lett ; 13(1): 321-328, 2017 Jan.
Article En | MEDLINE | ID: mdl-28123562

Oral leukoplakia (OL) is a clinically diagnosed preneoplastic lesion of the oral cavity with an increased oral cancer risk. However, the risk of malignant transformation is still difficult to assess. The objective of the present study was to examine the expression patterns of aldehyde dehydrogenase 1 (ALDH1) and podoplanin in OL, and to determine their roles in predicting oral cancer development. In the present study, the expression patterns of ALDH1 and podoplanin were determined in samples from 79 patients with OL. The association between protein expression and clinicopathological parameters, including oral cancer-free survival, was analyzed during a mean follow-up period of 3.4 years. Expression of ALDH1 and podoplanin was observed in 61 and 67% patients, respectively. Kaplan-Meier analysis demonstrated that the expression of the proteins was correlated with the risk of progression to oral cancer. Multivariate analysis revealed that expression of ALDH1 and podoplanin was associated with 3.02- and 2.62-fold increased risk of malignant transformation, respectively. The malignant transformation risk of OL was considerably higher in cases with expression of both proteins. Point-prevalence analysis revealed that 66% of patients with co-expression of ALDH1 and podoplanin developed oral cancer. Taken together, our data indicate that ALDH1 and podoplanin expression patterns in OL are associated with oral cancer development, suggesting that ALDH1 and podoplanin may be useful biomarkers to identify OL patients with a substantially high oral cancer risk.

...