Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Water Sci Technol ; 89(9): 2429-2439, 2024 May.
Article En | MEDLINE | ID: mdl-38747958

Sediment microbial fuel cells (SMFCs) represent a technology that can enhance sediment quality through processes such as nutrient suppression while simultaneously generating electricity from microorganisms. Despite its importance in elucidating the principles of nutrient suppression, the complex behavior of various ions within this context has been rarely explored. Herein, we applied an SMFC and systematically evaluated alterations in ion concentrations in interstitial and overlying waters. The SMFC deployment substantially decreased Na+ concentrations and increased Cl- levels in the interstitial water. This intriguing phenomenon was attributed to reactions driven by the electrodes. These reactions induced remarkable shifts in pH. Consequently, this pH shift triggered the leaching of heavy metals, particularly Fe, and decreased HCO3- concentrations within the interstitial water, thereby inducing the migration of other ions, including Na+ and Cl-, as compensation. Moreover, the PO43- concentration in interstitial water showed an increasing trend upon SMFC application, which contradicts the results of several previous reports. This increase was primarily attributed to the release of PO43-caused by the leaching of Fe salts, which was triggered by the pH shift. These findings provide new insights into sediment improvement research through SMFCs, enhancing our understanding of the fundamental principles and broadening the potential applications of this technology.


Bioelectric Energy Sources , Geologic Sediments , Hydrogen-Ion Concentration , Geologic Sediments/chemistry , Ions/chemistry
2.
Water Sci Technol ; 87(10): 2553-2563, 2023 May.
Article En | MEDLINE | ID: mdl-37257109

Sediment microbial fuel cells (SMFCs) represent a burgeoning technology that allows the remediation of sediments, such as nutrient suppression, while concurrently generating electricity. However, there is a limitation in that the nutrient suppression effect is restricted to a narrow range near the electrode. To address this issue, we developed an SMFC-aeration system, which intermittently aerates the overlying water with the power of SMFCs, thereby enhancing the nutrient suppression effect of SMFCs. The SMFC-aeration system achieved stable charge/discharge cycles through a capacitor-based circuit and aerated the overlying water. The dissolved NH4+ and NO2- concentrations in the overlying water decreased. Suppression in the dissolved NH4+ concentration near the anodes was also noticed compared to a consortium that employed only SMFCs. These findings were brought about by the synergistic effect of the SMFC-aeration system, which enabled the remediation of sediments and overlying water. To our knowledge, this is the first report on the intermittent operation of pumps by SMFCs, the increase of DO, and nutrient suppression. The SMFC-aeration system holds great potential as an environmental remediation method in closed-water areas in the future.


Bioelectric Energy Sources , Environmental Restoration and Remediation , Water , Geologic Sediments , Electricity , Electrodes
3.
J Am Chem Soc ; 140(1): 291-297, 2018 01 10.
Article En | MEDLINE | ID: mdl-29200273

The synthesis of a new ionic plastic crystal, tetraethylammonium-d20 d-10-camphorsulfonate, is reported. The crystal has three solid phases, the structures of which were determined by single-crystal X-ray diffraction (XRD). XRD analysis revealed a phase transition from nonpolar space group P21212 to polar space group P21 with increasing temperature. The dynamics of the d-10-camphorsulfonate anion and the tetraethylammonium-d20 cation was investigated by variable-temperature 1H and 2H solid-state NMR spectroscopy. The anion showed swing motion in high-temperature phases, which is in good agreement with the disorder observed in XRD analysis. The cation showed uniaxial rotation even in the low-temperature phase. The rotation axis of the tetrahedral structure showed a transition from the two-fold axis to the three-fold axis with the phase transition.

4.
Phys Chem Chem Phys ; 20(5): 3233-3240, 2018 Jan 31.
Article En | MEDLINE | ID: mdl-29099143

A novel chromophoric ionic liquid (IL) with two-dimensional (2D) nanostructural order is developed, and its structure-property relationship is investigated by harnessing photon upconversion based on triplet energy migration. An ion pair of 9,10-diphenylanthracene-2-sulphonate (DPAS) and asymmetric quaternary phosphonium ion exhibited both ionic crystal (IC) and supercooled IL phases at room temperature. Single crystal X-ray analysis of the IC phase showed an alternate alignment of polar (ionic) and non-polar (non-ionic) layers, and this layered structure was basically maintained even in the IL phase. The diffusion length of triplet excitons in the IL phase, obtained by the analysis of upconverted emission in succession to triplet-triplet annihilation (TTA), is larger than the domain size estimated from powder X-ray analysis. This suggests that triplet excitons in chromophoric ILs can diffuse over the nanostructured domains.

...