Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 19926, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968295

RESUMEN

Early diagnosis is one of the most important factors in determining the prognosis in cancer. Sensitive detection and quantification of tumour-specific biomarkers have the potential to improve significantly our diagnostic capability. Here, we introduce a triggerable aptamer-based nanostructure based on an oligonucleotide/gold nanoparticle architecture that selectively disassembles in the presence of the biomarker of interest; its optimization is based also on in-silico determination of the aptamer nucleotides interactions with the protein of interest. We demonstrate this scheme for the case of Prostate Specific Membrane Antigen (PSMA) and PSMA derived from PSMA-positive exosomes. We tested the disassembly of the system by diameter and count rate measurements in dynamic light scattering, and by inspection of its plasmon resonance shift, upon addition of PSMA, finding appreciable differences down to the sub-picomolar range; this points towards the possibility that this approach may lead to sensors competitive with diagnostic biochemical assays that require enzymatic amplification. More generally, this scheme has the potential to be applied to a broad range of pathologies with specific identified biomarkers.


Asunto(s)
Aptámeros de Nucleótidos , Nanopartículas del Metal , Neoplasias de la Próstata , Masculino , Humanos , Oro/química , Neoplasias de la Próstata/patología , Nanopartículas del Metal/química , Biomarcadores de Tumor , Aptámeros de Nucleótidos/química
2.
Nanomedicine ; 53: 102697, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37507061

RESUMEN

PEGylated lipid nanoparticles (LNPs) are commonly used to deliver bioactive molecules, but the role of PEGylation in DNA-loaded LNP interactions at the cellular and subcellular levels remains poorly understood. In this study, we investigated the mechanism of action of DNA-loaded PEGylated LNPs using gene reporter technologies, dynamic light scattering (DLS), synchrotron small angle X-ray scattering (SAXS), and fluorescence confocal microscopy (FCS). We found that PEG has no significant impact on the size or nanostructure of DNA LNPs but reduces their zeta potential and interaction with anionic cell membranes. PEGylation increases the structural stability of LNPs and results in lower DNA unloading. FCS experiments revealed that PEGylated LNPs are internalized intact inside cells and largely shuttled to lysosomes, while unPEGylated LNPs undergo massive destabilization on the plasma membrane. These findings can inform the design, optimization, and validation of DNA-loaded LNPs for gene delivery and vaccine development.


Asunto(s)
Lípidos , Nanopartículas , Lípidos/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Nanopartículas/química , ADN , Polietilenglicoles/química , ARN Interferente Pequeño
3.
ACS Appl Mater Interfaces ; 14(51): 56666-56677, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36524967

RESUMEN

Lipid nanoparticles (LNPs) are currently having an increasing impact on nanomedicines as delivery agents, among others, of RNA molecules (e.g., short interfering RNA for the treatment of hereditary diseases or messenger RNA for the development of COVID-19 vaccines). Despite this, the delivery of plasmid DNA (pDNA) by LNPs in preclinical studies is still unsatisfactory, mainly due to the lack of systematic structural and functional studies on DNA-loaded LNPs. To tackle this issue, we developed, characterized, and tested a library of 16 multicomponent DNA-loaded LNPs which were prepared by microfluidics and differed in lipid composition, surface functionalization, and manufacturing factors. 8 out of 16 formulations exhibited proper size and zeta potential and passed to the validation step, that is, the simultaneous quantification of transfection efficiency and cell viability in human embryonic kidney cells (HEK-293). The most efficient formulation (LNP15) was then successfully validated both in vitro, in an immortalized adult keratinocyte cell line (HaCaT) and in an epidermoid cervical cancer cell line (CaSki), and in vivo as a nanocarrier to deliver a cancer vaccine against the benchmark target tyrosine-kinase receptor HER2 in C57BL/6 mice. Finally, by a combination of confocal microscopy, transmission electron microscopy and synchrotron small-angle X-ray scattering, we were able to show that the superior efficiency of LNP15 can be linked to its disordered nanostructure consisting of small-size unoriented layers of pDNA sandwiched between closely apposed lipid membranes that undergo massive destabilization upon interaction with cellular lipids. Our results provide new insights into the structure-activity relationship of pDNA-loaded LNPs and pave the way to the clinical translation of this gene delivery technology.


Asunto(s)
COVID-19 , Nanopartículas , Animales , Ratones , Humanos , Vacunas contra la COVID-19 , Células HEK293 , Lípidos/química , Ratones Endogámicos C57BL , ADN/química , Nanopartículas/química , ARN Interferente Pequeño
4.
J Virol ; 95(23): e0135821, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34549986

RESUMEN

Gene editing may be used to excise the human immunodeficiency virus type 1 (HIV-1) provirus from the host cell genome, possibly eradicating the infection. Here, using cells acutely or latently infected by HIV-1 and treated with long terminal repeat (LTR)-targeting CRISPR/Cas9, we show that the excised HIV-1 provirus persists for a few weeks and may rearrange in circular molecules. Although circular proviral DNA is naturally formed during HIV-1 replication, we observed that gene editing might increase proviral DNA circles with restored LTRs. These extrachromosomal elements were recovered and probed for residual activity through their transfection in uninfected cells. We discovered that they can be transcriptionally active in the presence of Tat and Rev. Although confirming that gene editing is a powerful tool to eradicate HIV-1 infection, this work highlights that, to achieve this goal, the LTRs must be cleaved in several pieces to avoid residual activity and minimize the risk of reintegration in the context of genomic instability, possibly caused by the off-target activity of Cas9. IMPORTANCE The excision of HIV-1 provirus from the host cell genome has proven feasible in vitro and, to some extent, in vivo. Among the different approaches, CRISPR/Cas9 is the most promising tool for gene editing. The present study underlines the remarkable effectiveness of CRISPR/Cas9 in removing the HIV-1 provirus from infected cells and investigates the fate of the excised HIV-1 genome. This study demonstrates that the free provirus may persist in the cell after editing and in appropriate circumstances may reactivate. As an episome, it might be transcriptionally active, especially in the presence of Tat and Rev. The persistence of the HIV-1 episome was strongly decreased by gene editing with multiple targets. Although gene editing has the potential to eradicate HIV-1 infection, this work highlights a potential issue that warrants further investigation.


Asunto(s)
Sistemas CRISPR-Cas , ADN Circular , VIH-1/genética , Provirus/genética , Secuencias Repetidas Terminales , Proteína 9 Asociada a CRISPR , Edición Génica , Regulación Viral de la Expresión Génica , Terapia Genética , Células HEK293 , Infecciones por VIH/virología , Humanos , ARN Guía de Kinetoplastida/genética
5.
Sci Rep ; 7(1): 7411, 2017 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-28785021

RESUMEN

Acid ceramidase (AC) is a lysosomal cysteine hydrolase that catalyzes the conversion of ceramide into fatty acid and sphingosine. This reaction lowers intracellular ceramide levels and concomitantly generates sphingosine used for sphingosine-1-phosphate (S1P) production. Since increases in ceramide and consequent decreases of S1P reduce proliferation of various cancers, AC might offer a new target for anti-tumor therapy. Here we used CrispR-Cas9-mediated gene editing to delete the gene encoding for AC, ASAH1, in human A375 melanoma cells. ASAH1-null clones show significantly greater accumulation of long-chain saturated ceramides that are substrate for AC. As seen with administration of exogenous ceramide, AC ablation blocks cell cycle progression and accelerates senescence. Importantly, ASAH1-null cells also lose the ability to form cancer-initiating cells and to undergo self-renewal, which is suggestive of a key role for AC in maintaining malignancy and self-renewal of invasive melanoma cells. The results suggest that AC inhibitors might find therapeutic use as adjuvant therapy for advanced melanoma.


Asunto(s)
Ceramidasa Ácida/genética , Proliferación Celular , Senescencia Celular , Ceramidas/análisis , Técnicas de Inactivación de Genes , Melanocitos/enzimología , Melanocitos/metabolismo , Proteína 9 Asociada a CRISPR , Línea Celular Tumoral , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Humanos , Lisofosfolípidos/análisis , Esfingosina/análogos & derivados , Esfingosina/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...