Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 13(7)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38607079

RESUMEN

Tight junctions are a barrier-forming cell-cell adhesion complex and have been proposed to regulate cell proliferation. However, the underlying mechanisms are not well understood. Here, we used cells deficient in the junction scaffold ZO-1 alone or together with its paralog ZO-2, which disrupts the junctional barrier. We found that ZO-1 knockout increased cell proliferation, induced loss of cell density-dependent proliferation control, and promoted apoptosis and necrosis. These phenotypes were enhanced by double ZO-1/ZO-2 knockout. Increased proliferation was dependent on two transcriptional regulators: YAP and ZONAB. ZO-1 knockout stimulated YAP nuclear translocation and activity without changes in Hippo-dependent phosphorylation. Knockout promoted TANK-binding kinase 1 (TBK1) activation and increased expression of the RhoA activator GEF-H1. Knockdown of ZO-3, another paralog interacting with ZO1, was sufficient to induce GEF-H1 expression and YAP activity. GEF-H1, TBK1, and mechanotransduction at focal adhesions were found to cooperate to activate YAP/TEAD in ZO-1-deficient cells. Thus, ZO-1 controled cell proliferation and Hippo-independent YAP activity by activating a GEF-H1- and TBK1-regulated mechanosensitive signalling network.


Asunto(s)
Mecanotransducción Celular , Transducción de Señal , Proliferación Celular , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Fosforilación , Animales , Células de Riñón Canino Madin Darby , Perros
3.
Curr Biol ; 33(21): R1135-R1140, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37935122

RESUMEN

Various functions within our bodies require the generation and maintenance of compartments with distinct compositions, which in turn necessitate the formation of semipermeable cellular diffusion barriers. For example, the blood-brain barrier protects the brain by allowing only specific molecules to pass through. Another instance is the intestinal barrier, which allows the uptake of essential nutrients, while restricting the passage of pathogenic molecules and bacteria. Breakdown of such barriers causes various pathologies, such as brain or retinal edema, or diarrhoea. Epithelia and endothelia are the most common barrier-forming cells. Individual cells in such barriers are held together by cell-cell adhesion structures - also known as intercellular junctions - that are essential for barrier formation and maintenance. Here, we will focus on the structure and assembly of tight junctions (TJs) and their functions as barriers, but will refer to other adhesive structures crucial for barrier regulation such as adherens junctions (AJs) and focal adhesions to the extracellular matrix (ECM) (Figure 1A,B). We will also discuss additional functions of TJs in cell surface polarity and the regulation of gene expression, cell function, and cell behaviour.


Asunto(s)
Uniones Intercelulares , Uniones Estrechas , Uniones Estrechas/metabolismo , Uniones Intercelulares/metabolismo , Adhesión Celular , Uniones Adherentes/metabolismo , Encéfalo
4.
Cells ; 11(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36497035

RESUMEN

Formation and maintenance of tissue barriers require the coordination of cell mechanics and cell-cell junction assembly. Here, we combined methods to modulate ECM stiffness and to measure mechanical forces on adhesion complexes to investigate how tight junctions regulate cell mechanics and epithelial morphogenesis. We found that depletion of the tight junction adaptor ZO-1 disrupted junction assembly and morphogenesis in an ECM stiffness-dependent manner and led to a stiffness-dependant reorganisation of active myosin. Both junction formation and morphogenesis were rescued by inhibition of actomyosin contractility. ZO-1 depletion also impacted mechanical tension at cell-matrix and E-cadherin-based cell-cell adhesions. The effect on E-cadherin also depended on ECM stiffness and correlated with effects of ECM stiffness on actin cytoskeleton organisation. However, ZO-1 knockout also revealed tension-independent functions of ZO-1. ZO-1-deficient cells could assemble functional barriers at low tension, but their tight junctions remained corrupted with strongly reduced and discontinuous recruitment of junctional components. Our results thus reveal that reciprocal regulation between ZO-1 and cell mechanics controls tight junction assembly and epithelial morphogenesis, and that, in a second, tension-independent step, ZO-1 is required to assemble morphologically and structurally fully assembled and functionally normal tight junctions.


Asunto(s)
Fosfoproteínas , Uniones Estrechas , Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-1/metabolismo , Fosfoproteínas/metabolismo , Cadherinas/metabolismo , Citoesqueleto/metabolismo
5.
J Cell Biol ; 221(11)2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36121394

RESUMEN

Phagocytosis requires actin dynamics, but whether actomyosin contractility plays a role in this morphodynamic process is unclear. Here, we show that in the retinal pigment epithelium (RPE), particle binding to Mer Tyrosine Kinase (MerTK), a widely expressed phagocytic receptor, stimulates phosphorylation of the Cdc42 GEF Dbl3, triggering activation of MRCKß/myosin-II and its coeffector N-WASP, membrane deformation, and cup formation. Continued MRCKß/myosin-II activity then drives recruitment of a mechanosensing bridge, enabling cytoskeletal force transmission, cup closure, and particle internalization. In vivo, MRCKß is essential for RPE phagocytosis and retinal integrity. MerTK-independent activation of MRCKß signaling by a phosphomimetic Dbl3 mutant rescues phagocytosis in retinitis pigmentosa RPE cells lacking functional MerTK. MRCKß is also required for efficient particle translocation from the cortex into the cell body in Fc receptor-mediated phagocytosis. Thus, conserved MRCKß signaling at the cortex controls spatiotemporal regulation of actomyosin contractility to guide distinct phases of phagocytosis in the RPE and represents the principle phagocytic effector pathway downstream of MerTK.


Asunto(s)
Actomiosina , Proteína Quinasa de Distrofia Miotónica , Fagocitosis , Actinas/metabolismo , Actomiosina/metabolismo , Miosina Tipo II/metabolismo , Proteína Quinasa de Distrofia Miotónica/metabolismo , Fagocitosis/fisiología , Proteínas Tirosina Quinasas , Receptores Fc , Tirosina Quinasa c-Mer/metabolismo
6.
Cells ; 11(11)2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35681428

RESUMEN

Inflammation and fibrosis are important components of diseases that contribute to the malfunction of epithelia and endothelia. The Rho guanine nucleotide exchange factor (GEF) GEF-H1/ARHGEF-2 is induced in disease and stimulates inflammatory and fibrotic processes, cell migration, and metastasis. Here, we have generated peptide inhibitors to block the function of GEF-H1. Inhibitors were designed using a structural in silico approach or by isolating an inhibitory sequence from the autoregulatory C-terminal domain. Candidate inhibitors were tested for their ability to block RhoA/GEF-H1 binding in vitro, and their potency and specificity in cell-based assays. Successful inhibitors were then evaluated in models of TGFß-induced fibrosis, LPS-stimulated endothelial cell-cell junction disruption, and cell migration. Finally, the most potent inhibitor was successfully tested in an experimental retinal disease mouse model, in which it inhibited blood vessel leakage and ameliorated retinal inflammation when treatment was initiated after disease diagnosis. Thus, an antagonist that blocks GEF-H1 signaling effectively inhibits disease features in in vitro and in vivo disease models, demonstrating that GEF-H1 is an effective therapeutic target and establishing a new therapeutic approach.


Asunto(s)
Enfermedades de la Retina , Transducción de Señal , Animales , Fibrosis , Inflamación , Ratones , Factores de Intercambio de Guanina Nucleótido Rho/genética , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo
7.
Sci Rep ; 11(1): 14519, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34267243

RESUMEN

Tight junction complexes are involved in the establishment and maintenance of cell polarity and the regulation of signalling pathways, controlling biological processes such as cell differentiation and cell proliferation. MarvelD3 is a tight junction protein expressed in adult epithelial and endothelial cells. In Xenopus laevis, MarvelD3 morphants present differentiation defects of several ectodermal derivatives. In vitro experiments further revealed that MarvelD3 couples tight junctions to the MEKK1-JNK pathway to regulate cell behaviour and survival. In this work, we found that MarvelD3 is expressed from early developmental stages in the exocrine and endocrine compartments of the pancreas, as well as in endothelial cells of this organ. We thoroughly characterized MarvelD3 expression pattern in developing pancreas and evaluated its function by genetic ablation. Surprisingly, inactivation of MarvelD3 in mice did not alter development and differentiation of the pancreatic tissue. Moreover, tight junction formation and organization, cell polarization, and activity of the JNK-pathway were not impacted by the deletion of MarvelD3.


Asunto(s)
Proteínas con Dominio MARVEL/genética , Páncreas/embriología , Páncreas/fisiología , Proteínas de Uniones Estrechas/genética , Animales , Sistemas CRISPR-Cas , Diferenciación Celular/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Sistema de Señalización de MAP Quinasas/genética , Proteínas con Dominio MARVEL/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Páncreas/citología , Glándulas Salivales/fisiología , Análisis Espacio-Temporal , Proteínas de Uniones Estrechas/metabolismo
8.
Front Cell Dev Biol ; 9: 658006, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33842485

RESUMEN

Coordination of cell-cell adhesion, actomyosin dynamics and gene expression is crucial for morphogenetic processes underlying tissue and organ development. Rho GTPases are main regulators of the cytoskeleton and adhesion. They are activated by guanine nucleotide exchange factors in a spatially and temporally controlled manner. However, the roles of these Rho GTPase activators during complex developmental processes are still poorly understood. ARHGEF18/p114RhoGEF is a tight junction-associated RhoA activator that forms complexes with myosin II, and regulates actomyosin contractility. Here we show that p114RhoGEF/ARHGEF18 is required for mouse syncytiotrophoblast differentiation and placenta development. In vitro and in vivo experiments identify that p114RhoGEF controls expression of AKAP12, a protein regulating protein kinase A (PKA) signaling, and is required for PKA-induced actomyosin remodeling, cAMP-responsive element binding protein (CREB)-driven gene expression of proteins required for trophoblast differentiation, and, hence, trophoblast cell-cell fusion. Our data thus indicate that p114RhoGEF links actomyosin dynamics and cell-cell junctions to PKA/CREB signaling, gene expression and cell-cell fusion.

9.
J Cell Biol ; 220(6)2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33914026

RESUMEN

Rac1 GTPase is hyperactivated in tumors and contributes to malignancy. Rac1 disruption of junctions requires its effector PAK1, but the precise mechanisms are unknown. Here, we show that E-cadherin is internalized via micropinocytosis in a PAK1-dependent manner without catenin dissociation and degradation. In addition to internalization, PAK1 regulates E-cadherin transport by fine-tuning Rab small GTPase function. PAK1 phosphorylates a core Rab regulator, RabGDIß, but not RabGDIα. Phosphorylated RabGDIß preferentially associates with Rab5 and Rab11, which is predicted to promote Rab retrieval from membranes. Consistent with this hypothesis, Rab11 is activated by Rac1, and inhibition of Rab11 function partially rescues E-cadherin destabilization. Thus, Rac1 activation reduces surface cadherin levels as a net result of higher bulk flow of membrane uptake that counteracts Rab11-dependent E-cadherin delivery to junctions (recycling and/or exocytosis). This unique small GTPase crosstalk has an impact on Rac1 and PAK1 regulation of membrane remodeling during epithelial dedifferentiation, adhesion, and motility.


Asunto(s)
Uniones Adherentes/fisiología , Exocitosis , Queratinocitos/fisiología , Quinasas p21 Activadas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Actinas/metabolismo , Uniones Adherentes/química , Células Cultivadas , Humanos , Queratinocitos/citología , Transducción de Señal , Quinasas p21 Activadas/genética , Proteínas de Unión al GTP rab/genética , Proteína de Unión al GTP rac1/genética
10.
J Cell Physiol ; 236(2): 1083-1093, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32617970

RESUMEN

We reported that Disabled-2 (Dab2) is located at the apical membrane in suckling rat intestine. Here, we discovered that, in colon of suckling and adult mouse and of adult human, Dab2 is only at lateral crypt cell membrane and colocalized with E-cadherin. Dab2 depletion in Caco-2 cells led to E-cadherin internalization indicating that its membrane location requires Dab2. In mice, we found that 3 days of dextran sulfate sodium-induced colitis increased Dab2/E-cadherin colocalization, which was decreased as colitis progressed to 6 and 9 days. In agreement, Dab2/E-cadherin colocalization increased in human mild and severe ulcerative colitis and in polyps, being reduced in colon adenocarcinomas, which even showed epithelial Dab2 absence and E-cadherin delocalization. Epithelial Dab2 decrement preceded that of E-cadherin. We suggest that Dab2, by inhibiting E-cadherin internalization, stabilizes adherens junctions, and its absence from the epithelium may contribute to development of colon inflammation and cancer.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Adenocarcinoma/genética , Proteínas Reguladoras de la Apoptosis/genética , Cadherinas/genética , Neoplasias del Colon/genética , Proteínas Adaptadoras del Transporte Vesicular/genética , Adenocarcinoma/patología , Anciano , Animales , Células CACO-2 , Colitis/inducido químicamente , Colitis/genética , Colitis/patología , Colon/metabolismo , Colon/patología , Neoplasias del Colon/patología , Sulfato de Dextran/toxicidad , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Humanos , Inflamación/genética , Inflamación/patología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Masculino , Ratones , Persona de Mediana Edad , Pólipos/genética , Pólipos/patología , Ratas
11.
Cell Rep ; 32(3): 107924, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32697990

RESUMEN

Tight-junction-regulated actomyosin activity determines epithelial and endothelial tension on adherens junctions and drives morphogenetic processes; however, whether or not tight junctions themselves are under tensile stress is not clear. Here, we use a tension sensor based on ZO-1, a scaffolding protein that links the junctional membrane to the cytoskeleton, to determine if tight junctions carry a mechanical load. Our data indicate that ZO-1 is under mechanical tension and that forces acting on ZO-1 are regulated by extracellular matrix (ECM) stiffness and the junctional adhesion molecule JAM-A. JAM-A depletion stimulates junctional recruitment of p114RhoGEF/ARHGEF18, mechanical tension on ZO-1, and traction forces at focal adhesions. p114RhoGEF is required for activation of junctional actomyosin activity and tight junction integrity on stiff but not soft ECM. Thus, junctional ZO-1 bears a mechanical load, and junction assembly is regulated by interplay between the physical properties of the ECM and adhesion-regulated signaling at tight junctions.


Asunto(s)
Matriz Extracelular/metabolismo , Receptores de Superficie Celular/metabolismo , Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-1/metabolismo , Actomiosina/metabolismo , Animales , Perros , Células de Riñón Canino Madin Darby , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Transducción de Señal , Resistencia a la Tracción
12.
Cell ; 179(4): 937-952.e18, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31675500

RESUMEN

Cell-cell junctions respond to mechanical forces by changing their organization and function. To gain insight into the mechanochemical basis underlying junction mechanosensitivity, we analyzed tight junction (TJ) formation between the enveloping cell layer (EVL) and the yolk syncytial layer (YSL) in the gastrulating zebrafish embryo. We found that the accumulation of Zonula Occludens-1 (ZO-1) at TJs closely scales with tension of the adjacent actomyosin network, revealing that these junctions are mechanosensitive. Actomyosin tension triggers ZO-1 junctional accumulation by driving retrograde actomyosin flow within the YSL, which transports non-junctional ZO-1 clusters toward the TJ. Non-junctional ZO-1 clusters form by phase separation, and direct actin binding of ZO-1 is required for stable incorporation of retrogradely flowing ZO-1 clusters into TJs. If the formation and/or junctional incorporation of ZO-1 clusters is impaired, then TJs lose their mechanosensitivity, and consequently, EVL-YSL movement is delayed. Thus, phase separation and flow of non-junctional ZO-1 confer mechanosensitivity to TJs.


Asunto(s)
Desarrollo Embrionario/genética , Mecanotransducción Celular/genética , Uniones Estrechas/genética , Proteína de la Zonula Occludens-1/genética , Citoesqueleto de Actina/genética , Actomiosina/genética , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/crecimiento & desarrollo , Embrión no Mamífero/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Proteínas de la Membrana/genética , Ratones , Fosfoproteínas/genética , Unión Proteica , Uniones Estrechas/fisiología , Saco Vitelino/crecimiento & desarrollo , Saco Vitelino/metabolismo , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
13.
Life Sci Alliance ; 2(1)2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30760555

RESUMEN

Epithelial cells form sheets and tubules in various epithelial organs and establish apicobasal polarity and asymmetric vesicle transport to provide functionality in these structures. However, the molecular mechanisms that allow epithelial cells to establish polarity are not clearly understood. Here, we present evidence that the kinase activity of the receptor tyrosine kinase for collagen, discoidin domain receptor 1 (DDR1), is required for efficient establishment of epithelial polarity, proper asymmetric protein secretion, and execution of morphogenic programs. Lack of DDR1 protein or inhibition of DDR1 kinase activity disturbed tubulogenesis, cystogenesis, and the establishment of epithelial polarity and caused defects in the polarized localization of membrane-type 1 matrix metalloproteinase (MT1-MMP), GP135, primary cilia, laminin, and the Golgi apparatus. Disturbed epithelial polarity and cystogenesis upon DDR1 inhibition was caused by excess ROCK (rho-associated, coiled-coil-containing protein kinase)-driven actomyosin contractility, and pharmacological inhibition of ROCK was sufficient to correct these defects. Our data indicate that a DDR1-ROCK signaling axis is essential for the efficient establishment of epithelial polarity.


Asunto(s)
Actomiosina/metabolismo , Polaridad Celular/fisiología , Receptor con Dominio Discoidina 1/metabolismo , Células Epiteliales/metabolismo , Animales , Células CACO-2 , Cilios/metabolismo , Contactina 1/metabolismo , Perros , Femenino , Aparato de Golgi/metabolismo , Humanos , Laminina/metabolismo , Células de Riñón Canino Madin Darby , Masculino , Metaloproteinasa 14 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Organoides , Quinasas Asociadas a rho/metabolismo
14.
Biochim Biophys Acta Biomembr ; 1860(5): 1231-1241, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29470947

RESUMEN

Disabled-1 (Dab1) is an essential intracellular adaptor protein in the reelin pathway. Our previous studies in mice intestine showed that Dab1 transmits the reelin signal to cytosolic signalling pathways. Here, we determine the Dab1 isoform expressed in rodent small and large intestine, its subcellular location and co-localization with clathrin, caveolin-1 and N-Wasp. PCR and sequencing analysis reveal that rodent small and large intestine express a Dab1 isoform that misses three (Y198, Y200 and Y220) of the five tyrosine phosphorylation sites present in brain Dab1 isoform (canonical) and contains nuclear localization and export signals. Western blot assays show that both, crypts, which shelter progenitor cells, and enterocytes express the same Dab1 isoform, suggesting that epithelial cell differentiation does not regulate intestinal generation of alternatively spliced Dab1 variants. They also reveal that the canonical and the intestinal Dab1 isoforms differ in their total degree of phosphorylation. Immunostaining assays show that in enterocytes Dab1 localizes at the apical and lateral membranes, apical vesicles, close to adherens junctions and desmosomes, as well as in the nucleus; co-localizes with clathrin and with N-Wasp but not with caveolin-1, and in Caco-2 cells Dab1 localizes at cell-to-cell junctions by a Ca2+-dependent process. In conclusion, the results indicate that in rodent intestine a truncated Dab1 variant transmits the reelin signal and may play a role in clathrin-mediated apical endocytosis and in the control of cell-to-cell junction assembly. A function of intestinal Dab1 variant as a nucleocytoplasmic shuttling protein is also inferred from its sequence and nuclear location.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Endocitosis , Uniones Intercelulares/metabolismo , Intestino Grueso/metabolismo , Intestino Delgado/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Células CACO-2 , Comunicación Celular/genética , Células Cultivadas , Endocitosis/genética , Expresión Génica , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Unión Proteica , Isoformas de Proteínas , Ratas , Ratas Wistar , Proteína Reelina , Distribución Tisular
15.
Sci Rep ; 8(1): 1204, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29352236

RESUMEN

Tight junctions are required for the formation of tissue barriers and function as suppressors of signalling mechanisms that control gene expression and cell behaviour; however, little is known about the physiological and developmental importance of such signalling functions. Here, we demonstrate that depletion of MarvelD3, a transmembrane protein of tight junctions, disrupts neural crest formation and, consequently, development of neural crest-derived tissues during Xenopus embryogenesis. Using embryos and explant cultures combined with a small molecule inhibitor or mutant mRNAs, we show that MarvelD3 is required to attenuate JNK signalling during neural crest induction and that inhibition of JNK pathway activation is sufficient to rescue the phenotype induced by MarvelD3 depletion. Direct JNK stimulation disrupts neural crest development, supporting the importance of negative regulation of JNK. Our data identify the junctional protein MarvelD3 as an essential regulator of early vertebrate development and neural crest induction and, thereby, link tight junctions to the control and timing of JNK signalling during early development.


Asunto(s)
Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Sistema de Señalización de MAP Quinasas , Proteínas con Dominio MARVEL/genética , Cresta Neural/embriología , Cresta Neural/metabolismo , Animales , Biomarcadores , Diferenciación Celular/genética , Ectodermo/embriología , Ectodermo/metabolismo , Embrión no Mamífero , Desarrollo Embrionario/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas con Dominio MARVEL/metabolismo , Fenotipo , Xenopus
16.
Nat Cell Biol ; 19(9): 1049-1060, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28825699

RESUMEN

Polarized epithelia develop distinct cell surface domains, with the apical membrane acquiring characteristic morphological features such as microvilli. Cell polarization is driven by polarity determinants including the evolutionarily conserved partitioning-defective (PAR) proteins that are separated into distinct cortical domains. PAR protein segregation is thought to be a consequence of asymmetric actomyosin contractions. The mechanism of activation of apically polarized actomyosin contractility is unknown. Here we show that the Cdc42 effector MRCK activates myosin-II at the apical pole to segregate aPKC-Par6 from junctional Par3, defining the apical domain. Apically polarized MRCK-activated actomyosin contractility is reinforced by cooperation with aPKC-Par6 downregulating antagonistic RhoA-driven junctional actomyosin contractility, and drives polarization of cytosolic brush border determinants and apical morphogenesis. MRCK-activated polarized actomyosin contractility is required for apical differentiation and morphogenesis in vertebrate epithelia and Drosophila photoreceptors. Our results identify an apical origin of actomyosin-driven morphogenesis that couples cytoskeletal reorganization to PAR polarity signalling.


Asunto(s)
Membrana Celular/enzimología , Polaridad Celular , Células Epiteliales/enzimología , Proteína Quinasa de Distrofia Miotónica/metabolismo , Actomiosina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Animales Modificados Genéticamente , Células CACO-2 , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Perros , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/enzimología , Genotipo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Células de Riñón Canino Madin Darby , Proteínas de la Membrana/metabolismo , Morfogénesis , Miosina Tipo II/metabolismo , Proteína Quinasa de Distrofia Miotónica/genética , Fenotipo , Células Fotorreceptoras de Invertebrados/enzimología , Proteína Quinasa C/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , Transducción de Señal , Factores de Tiempo , Transfección , Proteína de Unión al GTP cdc42/metabolismo
17.
Am J Hum Genet ; 100(2): 334-342, 2017 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-28132693

RESUMEN

Mutations in more than 250 genes are implicated in inherited retinal dystrophy; the encoded proteins are involved in a broad spectrum of pathways. The presence of unsolved families after highly parallel sequencing strategies suggests that further genes remain to be identified. Whole-exome and -genome sequencing studies employed here in large cohorts of affected individuals revealed biallelic mutations in ARHGEF18 in three such individuals. ARHGEF18 encodes ARHGEF18, a guanine nucleotide exchange factor that activates RHOA, a small GTPase protein that is a key component of tight junctions and adherens junctions. This biological pathway is known to be important for retinal development and function, as mutation of CRB1, encoding another component, causes retinal dystrophy. The retinal structure in individuals with ARHGEF18 mutations resembled that seen in subjects with CRB1 mutations. Five mutations were found on six alleles in the three individuals: c.808A>G (p.Thr270Ala), c.1617+5G>A (p.Asp540Glyfs∗63), c.1996C>T (p.Arg666∗), c.2632G>T (p.Glu878∗), and c.2738_2761del (p.Arg913_Glu920del). Functional tests suggest that each disease genotype might retain some ARHGEF18 activity, such that the phenotype described here is not the consequence of nullizygosity. In particular, the p.Thr270Ala missense variant affects a highly conserved residue in the DBL homology domain, which is required for the interaction and activation of RHOA. Previously, knock-out of Arhgef18 in the medaka fish has been shown to cause larval lethality which is preceded by retinal defects that resemble those seen in zebrafish Crumbs complex knock-outs. The findings described here emphasize the peculiar sensitivity of the retina to perturbations of this pathway, which is highlighted as a target for potential therapeutic strategies.


Asunto(s)
Polaridad Celular , Células Epiteliales/metabolismo , Degeneración Retiniana/genética , Factores de Intercambio de Guanina Nucleótido Rho/genética , Adulto , Alelos , Secuencia de Aminoácidos , Exoma , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Femenino , Variación Genética , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Persona de Mediana Edad , Mutación Missense , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Linaje , Fenotipo , Retina/metabolismo , Degeneración Retiniana/diagnóstico , Distrofias Retinianas/genética , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
18.
Biol Open ; 5(11): 1631-1641, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27870636

RESUMEN

Ocular morphogenesis requires several signalling pathways controlling the expression of transcription factors and cell-cycle regulators. However, despite a well-known mechanism, the dialogue between those signals and factors remains to be unveiled. Here, we identify a requirement for MarvelD3, a tight junction transmembrane protein, in eye morphogenesis in Xenopus MarvelD3 depletion led to an abnormally pigmented eye or even an eye-less phenotype, which was rescued by ectopic MarvelD3 expression. Altering MarvelD3 expression led to deregulated expression of cell-cycle regulators and transcription factors required for eye development. The eye phenotype was rescued by increased c-Jun terminal Kinase activation. Thus, MarvelD3 links tight junctions and modulation of the JNK pathway to eye morphogenesis.

19.
Br J Ophthalmol ; 100(11): 1576-1583, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27543290

RESUMEN

PURPOSE: To evaluate the effect of media composition and storage method on pre-prepared Descemet's membrane endothelial keratoplasty (DMEK) grafts. METHODS: 50 corneas were used. Endothelial wound healing and proliferation in different media were assessed using a standard injury model. DMEK grafts were stored using three methods: peeling with free scroll storage; partial peeling with storage on the stroma and fluid bubble separation with storage on the stroma. Endothelial cell (EC) phenotype and the extent of endothelial overgrowth were examined. Global cell viability was assessed for storage methods that maintained a normal cell phenotype. RESULTS: 1 mm wounds healed within 4 days. Enhanced media did not increase EC proliferation but may have increased EC migration into the wounded area. Grafts that had been trephined showed evidence of EC overgrowth, whereas preservation of a physical barrier in the bubble group prevented this. In grafts stored in enhanced media or reapposed to the stroma after trephination, endothelial migration occurred sooner and cells underwent endothelial-mesenchymal transformation. Ongoing cell loss, with new patterns of cell death, was observed after returning grafts to storage. Grafts stored as free scrolls retained more viable ECs than grafts prepared with the fluid bubble method (74.2± 3% vs 60.3±6%, p=0.04 (n=8). CONCLUSION: Free scroll storage is superior to liquid bubble and partial peeling techniques. Free scrolls only showed overgrowth of ECs after 4 days in organ culture, indicating a viable time window for the clinical use of pre-prepared DMEK donor material using this method. Methods for tissue preparation and storage media developed for whole corneas should not be used in pre-prepared DMEK grafts without prior evaluation.


Asunto(s)
Enfermedades de la Córnea/cirugía , Queratoplastia Endotelial de la Lámina Limitante Posterior/métodos , Endotelio Corneal/citología , Donantes de Tejidos , Recolección de Tejidos y Órganos/métodos , Anciano , Recuento de Células , Supervivencia Celular , Femenino , Humanos , Masculino , Técnicas de Cultivo de Órganos , Agudeza Visual
20.
Nat Rev Mol Cell Biol ; 17(9): 564-80, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27353478

RESUMEN

Epithelia and endothelia separate different tissue compartments and protect multicellular organisms from the outside world. This requires the formation of tight junctions, selective gates that control paracellular diffusion of ions and solutes. Tight junctions also form the border between the apical and basolateral plasma-membrane domains and are linked to the machinery that controls apicobasal polarization. Additionally, signalling networks that guide diverse cell behaviours and functions are connected to tight junctions, transmitting information to and from the cytoskeleton, nucleus and different cell adhesion complexes. Recent advances have broadened our understanding of the molecular architecture and cellular functions of tight junctions.


Asunto(s)
Uniones Estrechas/fisiología , Animales , Adhesión Celular , Permeabilidad de la Membrana Celular , Citoesqueleto/metabolismo , Humanos , Modelos Biológicos , Uniones Estrechas/química , Uniones Estrechas/ultraestructura , Vertebrados/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...