Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Virol ; 93(16)2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31142674

RESUMEN

Viral proteins must intimately interact with the host cell machinery during virus replication. Here, we used the yeast Saccharomyces cerevisiae as a system to identify novel functional interactions between viral proteins and eukaryotic cells. Our work demonstrates that when the Middle East respiratory syndrome coronavirus (MERS-CoV) ORF4a accessory gene is expressed in yeast it causes a slow-growth phenotype. ORF4a has been characterized as an interferon antagonist in mammalian cells, and yet yeast lack an interferon system, suggesting further interactions between ORF4a and eukaryotic cells. Using the slow-growth phenotype as a reporter of ORF4a function, we utilized the yeast knockout library collection to perform a suppressor screen where we identified the YDL042C/SIR2 yeast gene as a suppressor of ORF4a function. The mammalian homologue of SIR2 is SIRT1, an NAD-dependent histone deacetylase. We found that when SIRT1 was inhibited by either chemical or genetic manipulation, there was reduced MERS-CoV replication, suggesting that SIRT1 is a proviral factor for MERS-CoV. Moreover, ORF4a inhibited SIRT1-mediated modulation of NF-κB signaling, demonstrating a functional link between ORF4a and SIRT1 in mammalian cells. Overall, the data presented here demonstrate the utility of yeast studies for identifying genetic interactions between viral proteins and eukaryotic cells. We also demonstrate for the first time that SIRT1 is a proviral factor for MERS-CoV replication and that ORF4a has a role in modulating its activity in cells.IMPORTANCE Middle East respiratory syndrome coronavirus (MERS-CoV) initially emerged in 2012 and has since been responsible for over 2,300 infections, with a case fatality ratio of approximately 35%. We have used the highly characterized model system of Saccharomyces cerevisiae to investigate novel functional interactions between viral proteins and eukaryotic cells that may provide new avenues for antiviral intervention. We identify a functional link between the MERS-CoV ORF4a proteins and the YDL042C/SIR2 yeast gene. The mammalian homologue of SIR2 is SIRT1, an NAD-dependent histone deacetylase. We demonstrate for the first time that SIRT1 is a proviral factor for MERS-CoV replication and that ORF4a has a role in modulating its activity in mammalian cells.


Asunto(s)
Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/virología , Interacciones Huésped-Patógeno , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Sirtuina 1/metabolismo , Replicación Viral , Línea Celular , Células Cultivadas , Infecciones por Coronavirus/genética , Silenciador del Gen , Humanos , Fenotipo , Unión Proteica , Interferencia de ARN , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Sirtuina 1/genética , Proteínas Estructurales Virales/genética , Proteínas Estructurales Virales/metabolismo , Levaduras/genética , Levaduras/metabolismo
2.
J Virol ; 91(1)2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27795435

RESUMEN

Middle East respiratory syndrome coronavirus (MERS-CoV) is an important emerging pathogen that was first described in 2012. While the cell surface receptor for MERS-CoV has been identified as dipeptidyl peptidase 4 (DPP4), the mouse DPP4 homologue does not allow virus entry into cells. Therefore, development of mouse models of MERS-CoV has been hampered by the fact that MERS-CoV does not replicate in commonly available mouse strains. We have previously described a mouse model in which mDPP4 was replaced with hDPP4 such that hDPP4 is expressed under the endogenous mDPP4 promoter. In this study, we used this mouse model to analyze the host response to MERS-CoV infection using immunological assays and transcriptome analysis. Depletion of CD4+ T cells, CD8+ T cells, or macrophages has no effect on MERS-CoV replication in the lungs of infected mice. However, we found that depletion of CD8+ T cells protects and depletion of macrophages exacerbates MERS-CoV-induced pathology and clinical symptoms of disease. Overall, we demonstrate an important role for the inflammatory response in regulating MERS-CoV pathogenesis in vivo IMPORTANCE: The Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly pathogenic respiratory virus that emerged from zoonotic sources in 2012. Human infections are still occurring throughout Saudi Arabia at a 38% case fatality rate, with the potential for worldwide spread via air travel. In this work, we identify the host response to the virus and identify inflammatory pathways and cell populations that are critical for protection from severe lung disease. By understanding the immune response to MERS-CoV we can develop targeted therapies to inhibit pathogenesis in the future.


Asunto(s)
Linfocitos T CD8-positivos/virología , Infecciones por Coronavirus/inmunología , Dipeptidil Peptidasa 4/genética , Macrófagos/virología , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Receptores Virales/genética , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/inmunología , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Dipeptidil Peptidasa 4/inmunología , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Pulmón/inmunología , Pulmón/virología , Depleción Linfocítica , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Regiones Promotoras Genéticas , Receptores Virales/inmunología , Transcriptoma , Transgenes , Internalización del Virus , Replicación Viral
3.
Proc Natl Acad Sci U S A ; 112(28): 8738-43, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26124093

RESUMEN

Traditional approaches to antimicrobial drug development are poorly suited to combatting the emergence of novel pathogens. Additionally, the lack of small animal models for these infections hinders the in vivo testing of potential therapeutics. Here we demonstrate the use of the VelocImmune technology (a mouse that expresses human antibody-variable heavy chains and κ light chains) alongside the VelociGene technology (which allows for rapid engineering of the mouse genome) to quickly develop and evaluate antibodies against an emerging viral disease. Specifically, we show the rapid generation of fully human neutralizing antibodies against the recently emerged Middle East Respiratory Syndrome coronavirus (MERS-CoV) and development of a humanized mouse model for MERS-CoV infection, which was used to demonstrate the therapeutic efficacy of the isolated antibodies. The VelocImmune and VelociGene technologies are powerful platforms that can be used to rapidly respond to emerging epidemics.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , Infecciones por Coronavirus/terapia , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Infecciones por Coronavirus/virología , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Ratones , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología
4.
J Gen Virol ; 95(Pt 4): 874-882, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24443473

RESUMEN

The recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV), a betacoronavirus, is associated with severe pneumonia and renal failure. The environmental origin of MERS-CoV is as yet unknown; however, its genome sequence is closely related to those of two bat coronaviruses, named BtCoV-HKU4 and BtCoV-HKU5, which were derived from Chinese bat samples. A hallmark of highly pathogenic respiratory viruses is their ability to evade the innate immune response of the host. CoV accessory proteins, for example those from severe acute respiratory syndrome CoV (SARS-CoV), have been shown to block innate antiviral signalling pathways. MERS-CoV, similar to SARS-CoV, has been shown to inhibit type I IFN induction in a variety of cell types in vitro. We therefore hypothesized that MERS-CoV and the phylogenetically related BtCoV-HKU4 and BtCoV-HKU5 may encode proteins with similar capabilities. In this study, we have demonstrated that the ORF4b-encoded accessory protein (p4b) of MERS-CoV, BtCoV-HKU4 and BtCoV-HKU5 may indeed facilitate innate immune evasion by inhibiting the type I IFN and NF-κB signalling pathways. We also analysed the subcellular localization of p4b from MERS-CoV, BtCoV-HKU4 and BtCoV-HKU5 and demonstrated that all are localized to the nucleus.


Asunto(s)
Núcleo Celular/química , Núcleo Celular/virología , Coronavirus/inmunología , Interacciones Huésped-Patógeno , Evasión Inmune , Proteínas Reguladoras y Accesorias Virales/inmunología , Animales , Quirópteros , Humanos , Interferón Tipo I/antagonistas & inhibidores , FN-kappa B/antagonistas & inhibidores
5.
J Gen Virol ; 95(Pt 2): 408-412, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24197535

RESUMEN

The Middle East respiratory syndrome coronavirus (MERS-CoV) is a newly emerging highly pathogenic virus causing almost 50 % lethality in infected individuals. The development of a small-animal model is critical for the understanding of this virus and to aid in development of countermeasures against MERS-CoV. We found that BALB/c, 129/SvEv and 129/SvEv STAT1 knockout mice are not permissive to MERS-CoV infection. The lack of infection may be due to the low level of mRNA and protein for the MERS-CoV receptor, dipeptidyl peptidase 4 (DPP4), in the lungs of mice. The low level of DPP4 in the lungs likely contributes to the lack of viral replication in these mouse models and suggests that a transgenic mouse model expressing DPP4 to higher levels is necessary to create a mouse model for MERS-CoV.


Asunto(s)
Coronaviridae/patogenicidad , Resistencia a la Enfermedad , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Ratones SCID
6.
Immunity ; 30(6): 832-44, 2009 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-19538929

RESUMEN

Effector T cell differentiation requires the simultaneous integration of multiple, and sometimes opposing, cytokine signals. We demonstrated mTOR's role in dictating the outcome of T cell fate. mTOR-deficient T cells displayed normal activation and IL-2 production upon initial stimulation. However, such cells failed to differentiate into T helper 1 (Th1), Th2, or Th17 effector cells. The inability to differentiate was associated with decreased STAT transcription factor activation and failure to upregulate lineage-specific transcription factors. Under normally activating conditions, T cells lacking mTOR differentiated into Foxp3(+) regulatory T cells. This was associated with hyperactive Smad3 activation in the absence of exogenous TGF-beta. Surprisingly, T cells selectively deficient in TORC1 do not divert to a regulatory T cell pathway, implicating both TORC1 and TORC2 in preventing the generation of regulatory T cells. Overall, our studies suggest that mTOR kinase signaling regulates decisions between effector and regulatory T cell lineage commitment.


Asunto(s)
Proteínas Portadoras/metabolismo , Diferenciación Celular/inmunología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Reguladores/inmunología , Transactivadores/inmunología , Factores de Transcripción/inmunología , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/inmunología , Interleucina-2/biosíntesis , Interleucina-2/inmunología , Ratones , Ratones Noqueados , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Factores de Transcripción STAT/inmunología , Factores de Transcripción STAT/metabolismo , Transducción de Señal/inmunología , Linfocitos T Colaboradores-Inductores/enzimología , Linfocitos T Reguladores/enzimología , Serina-Treonina Quinasas TOR , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/inmunología , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...