Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 46
1.
Lancet Microbe ; 5(3): e216-e225, 2024 03.
Article En | MEDLINE | ID: mdl-38278167

BACKGROUND: Accurate quantitation of immune markers is crucial for ensuring reliable assessment of vaccine efficacy against infectious diseases. This study was designed to confirm standardised performance of SARS-CoV-2 assays used to evaluate COVID-19 vaccine candidates at the initial seven laboratories (in North America, Europe, and Asia) of the Coalition for Epidemic Preparedness Innovations (CEPI) Centralized Laboratory Network (CLN). METHODS: Three ELISAs (pre-spike protein, receptor binding domain, and nucleocapsid), a microneutralisation assay (MNA), a pseudotyped virus-based neutralisation assay (PNA), and an IFN-γ T-cell ELISpot assay were developed, validated or qualified, and transferred to participating laboratories. Immune responses were measured in ELISA laboratory units (ELU) for ELISA, 50% neuralisation dilution (ND50) for MNA, 50% neutralisation titre (NT50) for PNA, and spot-forming units for the ELISpot assay. Replicate assay results of well characterised panels and controls of blood samples from individuals with or without SARS-CoV-2 infection were evaluated by geometric mean ratios, standard deviation, linear regression, and Spearman correlation analysis for consistency, accuracy, and linearity of quantitative measurements across all laboratories. FINDINGS: High reproducibility of results across all laboratories was demonstrated, with interlaboratory precision of 4·1-7·7% coefficient of variation for all three ELISAs, 3·8-19·5% for PNA, and 17·1-24·1% for MNA, over a linear range of 11-30 760 ELU per mL for the three ELISAs, 14-7876 NT50 per mL for PNA, and 21-25 587 ND50 per mL for MNA. The MNA was also adapted for detection of neutralising antibodies against the major SARS-CoV-2 variants of concern. The results of PNA and MNA (r=0·864) and of ELISA and PNA (r=0·928) were highly correlated. The IFN-γ ELISpot interlaboratory variability was 15·9-49·9% coefficient of variation. Sensitivity and specificity were close to 100% for all assays. INTERPRETATION: The CEPI CLN provides accurate quantitation of anti-SARS-CoV-2 immune response across laboratories to allow direct comparisons of different vaccine formulations in different geographical areas. Lessons learned from this programme will serve as a model for faster responses to future pandemic threats and roll-out of effective vaccines. FUNDING: CEPI.


COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/prevention & control , COVID-19 Vaccines , Laboratories , Reproducibility of Results , Antibodies, Viral , Immunity
2.
Front Immunol ; 14: 1184362, 2023.
Article En | MEDLINE | ID: mdl-37790941

Background: The virus neutralization assay is a principal method to assess the efficacy of antibodies in blocking viral entry. Due to biosafety handling requirements of viruses classified as hazard group 3 or 4, pseudotyped viruses can be used as a safer alternative. However, it is often queried how well the results derived from pseudotyped viruses correlate with authentic virus. This systematic review and meta-analysis was designed to comprehensively evaluate the correlation between the two assays. Methods: Using PubMed and Google Scholar, reports that incorporated neutralisation assays with both pseudotyped virus, authentic virus, and the application of a mathematical formula to assess the relationship between the results, were selected for review. Our searches identified 67 reports, of which 22 underwent a three-level meta-analysis. Results: The three-level meta-analysis revealed a high level of correlation between pseudotyped viruses and authentic viruses when used in an neutralisation assay. Reports that were not included in the meta-analysis also showed a high degree of correlation, with the exception of lentiviral-based pseudotyped Ebola viruses. Conclusion: Pseudotyped viruses identified in this report can be used as a surrogate for authentic virus, though care must be taken in considering which pseudotype core to use when generating new uncharacterised pseudotyped viruses.


Ebolavirus , Viral Pseudotyping
3.
Front Public Health ; 11: 1195674, 2023.
Article En | MEDLINE | ID: mdl-37415699

Introduction: In early to mid-2022, an unexpected outbreak of Monkeypox virus infections occurred outside the African endemic regions. Vaccines originally developed in the past to protect against smallpox are one of the available countermeasures to prevent and protect against Orthopoxvirus infections. To date, there are few studies on the cross-reactivity of neutralizing antibodies elicited by previous vaccinia virus-based vaccination and/or Monkeypox virus infection. The aim of this study was to evaluate a possible approach to performing Monkeypox and vaccinia live-virus microneutralization assays in which the read-out is based on the production of cytopathic effect in the cell monolayer. Methods: Given the complexity of Orthopoxviruses, the microneutralization assay was performed in such a way as to uncover a potential role of complement, with and without the addition of an external source of Baby Rabbit Complement. A set of human serum samples from individuals who had been naturally infected with Monkeypox virus and individuals who may have and not have undergone vaccinia virus vaccinations, was used to evaluate the performance, sensitivity, and specificity of the assay. Results and conclusions: The results of the present study confirm the presence and cross-reactivity of antibodies elicited by vaccinia-based vaccines, which proved able to neutralize the Monkeypox virus in the presence of an external source of complement.


Mpox (monkeypox) , Smallpox Vaccine , Vaccinia , Humans , Vaccinia virus , Mpox (monkeypox)/prevention & control , Antibodies, Viral , Monkeypox virus , Antibodies, Neutralizing , Vaccination
4.
NPJ Vaccines ; 8(1): 95, 2023 Jun 30.
Article En | MEDLINE | ID: mdl-37391580

Reference materials are critical in assay development for calibrating and assessing their suitability. The devasting nature of the COVID-19 pandemic and subsequent proliferation of vaccine platforms and technologies has meant that there is even a greater need for standards for immunoassay development, which are critical to assess and compare vaccines' responses. Equally important are the standards needed to control the vaccine manufacturing processes. Standardized vaccine characterization assays throughout process development are essential for a successful Chemistry, Manufacturing and Controls (CMC) strategy. In this perspective paper, we advocate for reference material incorporation into assays and their calibration to International Standards from preclinical vaccine development through control testing and provide insight into why this is necessary. We also provide information on the availability of WHO international antibody standards for CEPI-priority pathogens.

5.
J Virol ; 97(7): e0046923, 2023 07 27.
Article En | MEDLINE | ID: mdl-37310242

Due to increased and broadened screening efforts, the last decade has seen a rapid expansion in the number of viral species classified into the Hepacivirus genus. Conserved genetic features of hepaciviruses suggest that they have undergone specific adaptation and have evolved to hijack similar host proteins for efficient propagation in the liver. Here, we developed pseudotyped viruses to elucidate the entry factors of GB virus B (GBV-B), the first hepacivirus described in an animal after hepatitis C virus (HCV). GBV-B-pseudotyped viral particles (GBVBpp) were shown to be uniquely sensitive to the sera of tamarins infected with GBV-B, validating their usefulness as a surrogate for GBV-B entry studies. We screened GBVBpp infection of human hepatoma cell lines that were CRISPR/Cas9 engineered to ablate the expression of individual HCV receptors/entry factors and found that claudin-1 is essential for GBV-B infection, indicating the GBV-B and HCV share an entry factor. Our data suggest that claudin-1 facilitates HCV and GBV-B entry through distinct mechanisms since the former requires the first extracellular loop and the latter is reliant on a C-terminal region containing the second extracellular loop. The observation that claudin-1 is an entry factor shared between these two hepaciviruses suggests that the tight junction protein is of fundamental mechanistic importance during cell entry. IMPORTANCE Hepatitis C virus (HCV) is a major public health burden; approximately 58 million individuals have chronic HCV infection and are at risk of developing cirrhosis and liver cancer. To achieve the World Health Organization's target of eliminating hepatitis by 2030, new therapeutics and vaccines are needed. Understanding how HCV enters cells can inform the design of new vaccines and treatments targeting the first stage of infection. However, the HCV cell entry mechanism is complex and has been sparsely described. Studying the entry of related hepaciviruses will increase the knowledge of the molecular mechanisms of the first stages of HCV infection, such as membrane fusion, and inform structure-guided HCV vaccine design; in this work, we have identified a protein, claudin-1, that facilitates the entry of an HCV-related hepacivirus but with a mechanism not described for HCV. Similar work on other hepaciviruses may unveil a commonality of entry factors and, possibly, new mechanisms.


GB virus B , Hepatitis C , Animals , Humans , Hepacivirus/genetics , Claudin-1/genetics
6.
J Infect Dis ; 227(11): 1255-1265, 2023 05 29.
Article En | MEDLINE | ID: mdl-36780397

BACKGROUND: Neutralising antibodies (nAbs) play a critical role in the protection against severe COVID-19. In the era of vaccine boosters and repeated SARS-CoV-2 outbreaks, identifying individuals at risk represents a public health priority. METHODS: Relying on the Monaco COVID Public Health Programme, we evaluated nAbs from July 2021-June 2022 in 8,080 SARS-CoV-2 vaccinated and/or infected children and adults, at their inclusion visit. We stratified by infection status and investigated variables associated with nAbs using a generalised additive model. RESULTS: Infected and vaccinated participants had high and consistent nAbs (>800 IU/mL), which remained stable over time since injection, regardless of the number of vaccine doses, body mass index, sex, or age. By contrast, uninfected participants showed larger variability (two doses [V2] median 157.6; interquartile range [IQR] 43.3-439.1 IU/mL) versus three doses [V3] median 882.5; [829.5-914.8] IU/mL). NAbs decreased by 20% per month after V2 (adjusted ratio 0.80; 95%CI [0.79-0.82]), but remained stable after V3 (adjusted ratio 0.98; 95%CI [0.92-1.05]). CONCLUSIONS: Hybrid immunity provided stable, high and consistent nAbs over time. The benefit of boosters was marked to restore decaying nAbs in uninfected participants. NAbs could identify individuals at risk of severe COVID-19 and provide more targeted vaccine boosters' campaigns.


COVID-19 , SARS-CoV-2 , Adult , Child , Humans , Antibodies, Neutralizing , Cross-Sectional Studies , COVID-19/epidemiology , COVID-19/prevention & control , Vaccination
7.
Trop Med Infect Dis ; 8(1)2023 Jan 10.
Article En | MEDLINE | ID: mdl-36668962

Zika virus has spread around the world with rapid pace in the last five years. Although symptoms are typically mild and unspecific, Zika's major impact occurs during pregnancy, generating a congenital syndrome. Serology plays a key role in its diagnosis. However, its use is limited due to the uncertainty caused by the cross-reaction of antibodies elicited in response to other flavivirus infections when tested in direct immunoassays. Using a panel of previously generated anti-Zika non-structural protein 1 (NS1) nanobodies, a set was selected that only recognizes epitopes present in Zika and is immunogenic to humans. A proper arrangement of these nanobodies was made and conditions were optimized in order to develop a novel serology assay. This new ELISA relies on the inhibition of the binding of a set of selected nanobodies to Zika-immobilized NS1 when previously incubated with Zika convalescent sera. Using the developed blocking of binding assay, it was possible to discriminate between Zika-specific and cross-reactive antibodies in serum samples from infections with Zika and other flaviviruses.

9.
Lancet Microbe ; 3(3): e235-e240, 2022 03.
Article En | MEDLINE | ID: mdl-34723229

The first WHO International Standard and International Reference Panel for anti-SARS-CoV-2 immunoglobulin were established by the WHO Expert Committee on Biological Standardization in December, 2020. The WHO International Antibody Standards are intended to serve as global reference reagents, against which national reference preparations or secondary standards can be calibrated. Calibration will facilitate comparison of results of assays (eg, of the neutralising antibody response to candidate COVID-19 vaccines) conducted in different countries. Use of these standards is expected to contribute to better understanding of the immune response, and particularly of the correlates of protection. This Personal View provides some technical details of the WHO Antibody Standards for SARS-CoV-2, focusing specifically on the use of these standards for the evaluation of the immune response to COVID-19 vaccines, rather than other applications (eg, diagnostic or therapeutic). The explanation with regard to why rapid adoption of the standards is crucial is also included, as well as how funders, journals, regulators, and ethics committees could drive adoption in the interest of public health.


COVID-19 Vaccines , COVID-19 , Antibody Formation , COVID-19/prevention & control , Humans , SARS-CoV-2 , World Health Organization
11.
Bio Protoc ; 11(21): e4236, 2021 Nov 05.
Article En | MEDLINE | ID: mdl-34859134

This protocol details a rapid and reliable method for the production and titration of high-titre viral pseudotype particles with the SARS-CoV-2 spike protein (and D614G or other variants of concern, VOC) on a lentiviral vector core, and use for neutralisation assays in target cells expressing angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2). It additionally provides detailed instructions on substituting in new spike variants via gene cloning, lyophilisation and storage/shipping considerations for wide deployment potential. Results obtained with this protocol show that SARS-CoV-2 pseudotypes can be produced at equivalent titres to SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV) pseudotypes, neutralised by human convalescent plasma and monoclonal antibodies, and stored at a range of laboratory temperatures and lyophilised for distribution and subsequent application.

12.
Bio Protoc ; 11(16): e4194, 2021 Aug 20.
Article En | MEDLINE | ID: mdl-34541054

The use of recombinant lentivirus pseudotyped with the coronavirus Spike protein of SARS-CoV-2 would circumvent the requirement of biosafety-level 3 (BSL-3) containment facilities for the handling of SARS-CoV-2 viruses. Herein, we describe a fast and reliable protocol for the transient production of lentiviruses pseudotyped with SARS-CoV-2 Spike (CoV-2 S) proteins and green fluorescent protein (GFP) reporters. The virus titer is determined by the GFP reporter (fluorescent) expression with a flow cytometer. High titers (>1.00 E+06 infectious units/ml) are produced using codon-optimized CoV-2 S, harbouring the prevalent D614G mutation and lacking its ER retention signal. Enhanced and consistent cell entry is achieved by using permissive HEK293T/17 cells that were genetically engineered to stably express the SARS-CoV-2 human receptor ACE2 along with the cell surface protease TMPRSS2 required for efficient fusion. For the widespread use of this protocol, its reagents have been made publicly available. Graphic abstract: Production and quantification of lentiviral vectors pseudotyped with the SARS-CoV-2 Spike glycoprotein.

13.
Antiviral Res ; 194: 105147, 2021 10.
Article En | MEDLINE | ID: mdl-34375715

The SARS-CoV-2 receptor angiotensin converting enzyme 2 (ACE2) was previously engineered into a high affinity tetravalent format (ACE2-Fc-TD) that is a potential decoy protein in SARS-CoV-2 infection.We report that this protein shows greatly enhanced binding to SARS-CoV-2 spike proteins of the SARS-CoV-2 variants of concern B.1.1.7 (alpha variant, originally isolated in the United Kingdom) and B.1.351 (beta variant, originally isolated in South Africa) with picomolar compared with nanomolar Kd values. In addition, ACE2-Fc-TD displays greater neutralization of SARS-CoV-2 pseudotype viruses compared to a dimeric ACE2-Fc, with enhanced activity on variant B.1.351. This tetrameric decoy protein would be a valuable addition to SARS-CoV-2 therapeutic approaches, especially where vaccination cannot be used but also should there be any future coronavirus pandemics.


Angiotensin-Converting Enzyme 2/pharmacology , Antiviral Agents/metabolism , COVID-19/prevention & control , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/chemistry , COVID-19/enzymology , COVID-19/virology , Cell Line , Humans , Kinetics , Mutation , Protein Binding , Protein Domains , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/metabolism , COVID-19 Drug Treatment
14.
Trop Med Infect Dis ; 6(3)2021 Aug 25.
Article En | MEDLINE | ID: mdl-34449756

Ebolaviruses continue to pose a significant outbreak threat, and while Ebola virus (EBOV)-specific vaccines and antivirals have been licensed, efforts to develop candidates offering broad species cross-protection are continuing. The use of pseudotyped virus in place of live virus is recognised as an alternative, safer, high-throughput platform to evaluate anti-ebolavirus antibodies towards their development, yet it requires optimisation. Here, we have shown that the target cell line impacts neutralisation assay results and cannot be selected purely based on permissiveness. In expanding the platform to incorporate each of the ebolavirus species envelope glycoprotein, allowing a comprehensive assessment of cross-neutralisation, we found that the recently discovered Bombali virus has a point mutation in the receptor-binding domain which prevents entry into a hamster cell line and, importantly, shows that this virus can be cross-neutralised by EBOV antibodies and convalescent plasma.

15.
Front Immunol ; 12: 678570, 2021.
Article En | MEDLINE | ID: mdl-34211469

Passive immunization using monoclonal antibodies will play a vital role in the fight against COVID-19. The recent emergence of viral variants with reduced sensitivity to some current antibodies and vaccines highlights the importance of broad cross-reactivity. This study describes deep-mining of the antibody repertoires of hospitalized COVID-19 patients using phage display technology and B cell receptor (BCR) repertoire sequencing to isolate neutralizing antibodies and gain insights into the early antibody response. This comprehensive discovery approach has yielded a panel of potent neutralizing antibodies which bind distinct viral epitopes including epitopes conserved in SARS-CoV-1. Structural determination of a non-ACE2 receptor blocking antibody reveals a previously undescribed binding epitope, which is unlikely to be affected by the mutations in any of the recently reported major viral variants including B.1.1.7 (from the UK), B.1.351 (from South Africa) and B.1.1.28 (from Brazil). Finally, by combining sequences of the RBD binding and neutralizing antibodies with the B cell receptor repertoire sequencing, we also describe a highly convergent early antibody response. Similar IgM-derived sequences occur within this study group and also within patient responses described by multiple independent studies published previously.


Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/therapeutic use , COVID-19/prevention & control , COVID-19/therapy , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Cell Surface Display Techniques/methods , Data Mining/methods , Epitopes/immunology , Humans , Immunization, Passive/methods , COVID-19 Serotherapy
16.
J Virol ; 95(19): e0068521, 2021 09 09.
Article En | MEDLINE | ID: mdl-34287040

The human angiotensin-converting enzyme 2 acts as the host cell receptor for SARS-CoV-2 and the other members of the Coronaviridae family SARS-CoV-1 and HCoV-NL63. Here, we report the biophysical properties of the SARS-CoV-2 spike variants D614G, B.1.1.7, B.1.351, and P.1 with affinities to the ACE2 receptor and infectivity capacity, revealing weaknesses in the developed neutralizing antibody approaches. Furthermore, we report a preclinical characterization package for a soluble receptor decoy engineered to be catalytically inactive and immunologically inert, with broad neutralization capacity, that represents an attractive therapeutic alternative in light of the mutational landscape of COVID-19. This construct efficiently neutralized four SARS-CoV-2 variants of concern. The decoy also displays antibody-like biophysical properties and manufacturability, strengthening its suitability as a first-line treatment option in prophylaxis or therapeutic regimens for COVID-19 and related viral infections. IMPORTANCE Mutational drift of SARS-CoV-2 risks rendering both therapeutics and vaccines less effective. Receptor decoy strategies utilizing soluble human ACE2 may overcome the risk of viral mutational escape since mutations disrupting viral interaction with the ACE2 decoy will by necessity decrease virulence, thereby preventing meaningful escape. The solution described here of a soluble ACE2 receptor decoy is significant for the following reasons: while previous ACE2-based therapeutics have been described, ours has novel features, including (i) mutations within ACE2 to remove catalytical activity and systemic interference with the renin/angiotensin system, (ii) abrogated FcγR engagement, reduced risk of antibody-dependent enhancement of infection, and reduced risk of hyperinflammation, and (iii) streamlined antibody-like purification process and scale-up manufacturability indicating that this receptor decoy could be produced quickly and easily at scale. Finally, we demonstrate that ACE2-based therapeutics confer a broad-spectrum neutralization potency for ACE2-tropic viruses, including SARS-CoV-2 variants of concern in contrast to therapeutic MAb.


Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Viral/immunology , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Antibodies, Neutralizing/immunology , Antibody-Dependent Enhancement , COVID-19/immunology , HEK293 Cells , Humans , Kinetics , Mutation , Protein Binding , Protein Domains , Protein Interaction Domains and Motifs , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/metabolism
17.
Sci Rep ; 11(1): 10617, 2021 05 19.
Article En | MEDLINE | ID: mdl-34012108

Approaches are needed for therapy of the severe acute respiratory syndrome from SARS-CoV-2 coronavirus (COVID-19). Interfering with the interaction of viral antigens with the angiotensin converting enzyme 2 (ACE-2) receptor is a promising strategy by blocking the infection of the coronaviruses into human cells. We have implemented a novel protein engineering technology to produce a super-potent tetravalent form of ACE2, coupled to the human immunoglobulin γ1 Fc region, using a self-assembling, tetramerization domain from p53 protein. This high molecular weight Quad protein (ACE2-Fc-TD) retains binding to the SARS-CoV-2 receptor binding spike protein and can form a complex with the spike protein plus anti-viral antibodies. The ACE2-Fc-TD acts as a powerful decoy protein that out-performs soluble monomeric and dimeric ACE2 proteins and blocks both SARS-CoV-2 pseudovirus and SARS-CoV-2 virus infection with greatly enhanced efficacy. The ACE2 tetrameric protein complex promise to be important for development as decoy therapeutic proteins against COVID-19. In contrast to monoclonal antibodies, ACE2 decoy is unlikely to be affected by mutations in SARS-CoV-2 that are beginning to appear in variant forms. In addition, ACE2 multimeric proteins will be available as therapeutic proteins should new coronaviruses appear in the future because these are likely to interact with ACE2 receptor.


Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/pharmacology , Antiviral Agents/metabolism , COVID-19/prevention & control , Protein Engineering/methods , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antiviral Agents/chemistry , COVID-19/enzymology , COVID-19/virology , Cell Line , Drug Design , Haplorhini , Humans , Protein Binding , Protein Structural Elements , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , COVID-19 Drug Treatment
18.
Sci Rep ; 11(1): 10475, 2021 05 18.
Article En | MEDLINE | ID: mdl-34006961

Infection by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes COVID-19 disease. Therapeutic antibodies are being developed that interact with the viral spike proteins to limit viral infection of epithelium. We have applied a method to dramatically improve the performance of anti-SARS-CoV-2 antibodies by enhancing avidity through multimerization using simple engineering to yield tetrameric antibodies. We have re-engineered six anti-SARS-CoV-2 antibodies using the human p53 tetramerization domain, including three clinical trials antibodies casirivimab, imdevimab and etesevimab. The method yields tetrameric antibodies, termed quads, that retain efficient binding to the SARS-CoV-2 spike protein, show up to two orders of magnitude enhancement in neutralization of pseudovirus infection and retain potent interaction with virus variant of concern spike proteins. The tetramerization method is simple, general and its application is a powerful methodological development for SARS-CoV-2 antibodies that are currently in pre-clinical and clinical investigation.


SARS-CoV-2/metabolism , Single-Chain Antibodies/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antigen-Antibody Reactions , COVID-19/virology , Enzyme-Linked Immunosorbent Assay , HEK293 Cells , Humans , Neutralization Tests , Protein Domains , Protein Multimerization , Recombinant Proteins/biosynthesis , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Recombinant Proteins/therapeutic use , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/genetics , Single-Chain Antibodies/therapeutic use , Surface Plasmon Resonance , Tumor Suppressor Protein p53/chemistry , COVID-19 Drug Treatment
20.
Viruses ; 13(2)2021 01 31.
Article En | MEDLINE | ID: mdl-33572589

Serological assays detecting neutralising antibodies are important for determining the immune responses following infection or vaccination and are also often considered a correlate of protection. The target of neutralising antibodies is usually located in the Envelope protein on the viral surface, which mediates cell entry. As such, presentation of the Envelope protein on a lentiviral particle represents a convenient alternative to handling of a potentially high containment virus or for those viruses with no established cell culture system. The flexibility, relative safety and, in most cases, ease of production of lentiviral pseudotypes, have led to their use in serological assays for many applications such as the evaluation of candidate vaccines, screening and characterization of anti-viral therapeutics, and sero-surveillance. Above all, the speed of production of the lentiviral pseudotypes, once the envelope sequence is published, makes them important tools in the response to viral outbreaks, as shown during the COVID-19 pandemic in 2020. In this review, we provide an overview of the landscape of the serological applications of pseudotyped lentiviral vectors, with a brief discussion on their production and batch quality analysis. Finally, we evaluate their role as surrogates for the real virus and possible alternatives.


COVID-19 Serological Testing/methods , COVID-19/diagnosis , COVID-19/therapy , Genetic Therapy/methods , Genetic Vectors/genetics , Animals , Antiviral Agents , COVID-19/blood , COVID-19 Vaccines/administration & dosage , Humans , Lentivirus/genetics , SARS-CoV-2/isolation & purification
...