Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 299(2): 102851, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36587767

RESUMEN

Misfolded proteins are recognized and degraded through protein quality control (PQC) pathways, which are essential for maintaining proteostasis and normal cellular functions. Defects in PQC can result in disease, including cancer, cardiovascular disease, and neurodegeneration. The small ubiquitin-related modifiers (SUMOs) were previously implicated in the degradation of nuclear misfolded proteins, but their functions in cytoplasmic PQC are unclear. Here, in a systematic screen of SUMO protein mutations in the budding yeast Saccharomyces cerevisiae, we identified a mutant allele (Smt3-K38A/K40A) that sensitizes cells to proteotoxic stress induced by amino acid analogs. Smt3-K38A/K40A mutant strains also exhibited a defect in the turnover of a soluble PQC model substrate containing the CL1 degron (NES-GFP-Ura3-CL1) localized in the cytoplasm, but not the nucleus. Using human U2OS SUMO1- and SUMO2-KO cell lines, we observed a similar SUMO-dependent pathway for degradation of the mammalian degron-containing PQC reporter protein, GFP-CL1, also only in the cytoplasm but not the nucleus. Moreover, we found that turnover of GFP-CL1 in the cytoplasm was uniquely dependent on SUMO1 but not the SUMO2 paralogue. Additionally, we showed that turnover of GFP-CL1 in the cytoplasm is dependent on the AAA-ATPase, Cdc48/p97. Cellular fractionation studies and analysis of a SUMO1-GFP-CL1 fusion protein revealed that SUMO1 promotes cytoplasmic misfolded protein degradation by maintaining substrate solubility. Collectively, our findings reveal a conserved and previously unrecognized role for SUMO1 in regulating cytoplasmic PQC and provide valuable insights into the roles of sumoylation in PQC-associated diseases.


Asunto(s)
Proteolisis , Proteína SUMO-1 , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animales , Humanos , Citoplasma/metabolismo , Citosol/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo
2.
Cells ; 13(1)2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38201212

RESUMEN

Small ubiquitin-related modifiers (SUMOs) function as post-translational protein modifications and regulate nearly every aspect of cellular function. While a single ubiquitin protein is expressed across eukaryotic organisms, multiple SUMO paralogues with distinct biomolecular properties have been identified in plants and vertebrates. Five SUMO paralogues have been characterized in humans, with SUMO1, SUMO2 and SUMO3 being the best studied. SUMO2 and SUMO3 share 97% protein sequence homology (and are thus referred to as SUMO2/3) but only 47% homology with SUMO1. To date, thousands of putative sumoylation substrates have been identified thanks to advanced proteomic techniques, but the identification of SUMO1- and SUMO2/3-specific modifications and their unique functions in physiology and pathology are not well understood. The SUMO2/3 paralogues play an important role in proteostasis, converging with ubiquitylation to mediate protein degradation. This function is achieved primarily through SUMO-targeted ubiquitin ligases (STUbLs), which preferentially bind and ubiquitylate poly-SUMO2/3 modified proteins. Effects of the SUMO1 paralogue on protein solubility and aggregation independent of STUbLs and proteasomal degradation have also been reported. Consistent with these functions, sumoylation is implicated in multiple human diseases associated with disturbed proteostasis, and a broad range of pathogenic proteins have been identified as SUMO1 and SUMO2/3 substrates. A better understanding of paralogue-specific functions of SUMO1 and SUMO2/3 in cellular protein quality control may therefore provide novel insights into disease pathogenesis and therapeutic innovation. This review summarizes current understandings of the roles of sumoylation in protein quality control and associated diseases, with a focus on the specific effects of SUMO1 and SUMO2/3 paralogues.


Asunto(s)
Proteómica , Ubiquitina , Humanos , Animales , Procesamiento Proteico-Postraduccional , Eucariontes , Poli A , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina , Proteína SUMO-1
3.
Front Genet ; 12: 753535, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868226

RESUMEN

Sumoylation is an important enhancer of responses to DNA replication stress and the SUMO-targeted ubiquitin E3 ligase RNF4 regulates these responses by ubiquitylation of sumoylated DNA damage response factors. The specific targets and functional consequences of RNF4 regulation in response to replication stress, however, have not been fully characterized. Here we demonstrated that RNF4 is required for the restart of DNA replication following prolonged hydroxyurea (HU)-induced replication stress. Contrary to its role in repair of γ-irradiation-induced DNA double-strand breaks (DSBs), our analysis revealed that RNF4 does not significantly impact recognition or repair of replication stress-associated DSBs. Rather, using DNA fiber assays, we found that the firing of new DNA replication origins, which is required for replication restart following prolonged stress, was inhibited in cells depleted of RNF4. We also provided evidence that RNF4 recognizes and ubiquitylates sumoylated Bloom syndrome DNA helicase BLM and thereby promotes its proteosome-mediated turnover at damaged DNA replication forks. Consistent with it being a functionally important RNF4 substrate, co-depletion of BLM rescued defects in the firing of new replication origins observed in cells depleted of RNF4 alone. We concluded that RNF4 acts to remove sumoylated BLM from collapsed DNA replication forks, which is required to facilitate normal resumption of DNA synthesis after prolonged replication fork stalling and collapse.

4.
Mol Biol Cell ; 32(19): 1849-1866, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34232706

RESUMEN

The small ubiquitin-related modifiers (SUMOs) regulate nearly every aspect of cellular function, from gene expression in the nucleus to ion transport at the plasma membrane. In humans, the SUMO pathway has five SUMO paralogues with sequence homologies that range from 45% to 97%. SUMO1 and SUMO2 are the most distantly related paralogues and also the best studied. To what extent SUMO1, SUMO2, and the other paralogues impart unique and nonredundant effects on cellular functions, however, has not been systematically examined and is therefore not fully understood. For instance, knockout studies in mice have revealed conflicting requirements for the paralogues during development and studies in cell culture have relied largely on transient paralogue overexpression or knockdown. To address the existing gap in understanding, we first analyzed SUMO paralogue gene expression levels in normal human tissues and found unique patterns of SUMO1-3 expression across 30 tissue types, suggesting paralogue-specific functions in adult human tissues. To systematically identify and characterize unique and nonredundant functions of the SUMO paralogues in human cells, we next used CRISPR-Cas9 to knock out SUMO1 and SUMO2 expression in osteosarcoma (U2OS) cells. Analysis of these knockout cell lines revealed essential functions for SUMO1 and SUMO2 in regulating cellular morphology, promyelocytic leukemia (PML) nuclear body structure, responses to proteotoxic and genotoxic stress, and control of gene expression. Collectively, our findings reveal nonredundant regulatory roles for SUMO1 and SUMO2 in controlling essential cellular processes and provide a basis for more precise SUMO-targeting therapies.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Proteína SUMO-1/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Ubiquitinas/genética , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Supervivencia Celular/genética , Técnicas de Inactivación de Genes , Ontología de Genes , Humanos , Immunoblotting/métodos , Microscopía Fluorescente/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Proteína SUMO-1/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Ubiquitinas/metabolismo
5.
J Cell Sci ; 133(20)2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33008845

RESUMEN

Keratin 17 (KRT17; K17), a non-lamin intermediate filament protein, was recently found to occur in the nucleus. We report here on K17-dependent differences in nuclear morphology, chromatin organization, and cell proliferation. Human tumor keratinocyte cell lines lacking K17 exhibit flatter nuclei relative to normal. Re-expression of wild-type K17, but not a mutant form lacking an intact nuclear localization signal (NLS), rescues nuclear morphology in KRT17-null cells. Analyses of primary cultures of skin keratinocytes from a mouse strain expressing K17 with a mutated NLS corroborated these findings. Proteomics screens identified K17-interacting nuclear proteins with known roles in gene expression, chromatin organization and RNA processing. Key histone modifications and LAP2ß (an isoform encoded by TMPO) localization within the nucleus are altered in the absence of K17, correlating with decreased cell proliferation and suppression of GLI1 target genes. Nuclear K17 thus impacts nuclear morphology with an associated impact on chromatin organization, gene expression, and proliferation in epithelial cells.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Queratina-17 , Queratinocitos , Animales , Proliferación Celular/genética , Cromatina/genética , Queratina-17/genética , Ratones , Piel
6.
J Gastrointest Oncol ; 10(5): 821-830, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31602319

RESUMEN

Sumoylation is an important post-translational modification that involves the conjugation of the Small Ubiquitin-related Modifier (SUMO) onto target proteins. This modification is reversed through the catalytic activity of SUMO isopeptidases, known as SENPs. One of these SENPs, SENP1, was reported to be overexpressed in human pancreatic cancer cells and patient tissues. Since elevated SENP1 expression levels can be used as a prognostic marker for a subset of cancers, we set out to further explore the overexpression of SENP1 in pancreatic cancer. We found that SENP1 protein levels were not significantly different between pancreatic cancer and normal pancreas-derived cell lines. To evaluate SENP1 expression in patient samples, we analyzed large publicly available datasets and found that SENP1 mRNA levels were significantly lower in pancreatic cancer tissue as compared to normal pancreas tissue samples. Furthermore, we found that the SENP1 gene is amplified in less than 1% of sequenced pancreatic cancer patient samples and that expression levels have no association with patient survival. Based on our analysis, we conclude that SENP1 is not overexpressed in pancreatic cancer and is therefore not likely to be an effective biomarker for this disease. Through this work, we also outline a simple but powerful bioinformatics workflow for the assessment of mRNA expression levels, genomic alterations and survival analysis for putative biomarkers for common human cancers.

7.
Bio Protoc ; 8(19)2018 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-30505883

RESUMEN

The Small Ubiquitin-related Modifier (SUMO) is a protein that is post-translationally added to and reversibly removed from other proteins in eukaryotic cells. SUMO and enzymes of the SUMO pathway are well conserved from yeast to humans and SUMO modification regulates a variety of essential cellular processes including transcription, chromatin remodeling, DNA damage repair, and cell cycle progression. One of the challenges in studying SUMO modification in vivo is the relatively low steady-state level of a SUMO-modified protein due in part to the activity of SUMO deconjugating enzymes known as SUMO Isopeptidases or SENPs. Fortunately, the use of recombinant SUMO enzymes makes it possible to study SUMO modification in vitro. Here, we describe a sensitive method for detecting SUMO modification of target human proteins using an in vitro transcription and translation system derived from rabbit reticulocyte and radiolabeled amino acids.

8.
Mol Biol Cell ; 29(15): 1878-1890, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29874116

RESUMEN

Sumoylation regulates a wide range of essential cellular functions, many of which are associated with activities in the nucleus. Although there is also emerging evidence for the involvement of the small ubiquitin-related modifier (SUMO) at intracellular membranes, the mechanisms by which sumoylation is regulated at membranes is largely unexplored. In this study, we report that the SUMO-specific isopeptidase, SENP2, uniquely associates with intracellular membranes. Using in vivo analyses and in vitro binding assays, we show that SENP2 is targeted to intracellular membranes via a predicted N-terminal amphipathic α-helix that promotes direct membrane binding. Furthermore, we demonstrate that SENP2 binding to intracellular membranes is regulated by interactions with the nuclear import receptor karyopherin-α. Consistent with membrane association, biotin identification (BioID) revealed interactions between SENP2 and endoplasmic reticulum, Golgi, and inner nuclear membrane-associated proteins. Collectively, our findings indicate that SENP2 binds to intracellular membranes where it interacts with membrane-associated proteins and has the potential to regulate their sumoylation and membrane-associated functions.


Asunto(s)
Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/metabolismo , Membranas Intracelulares/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Secuencia de Aminoácidos , Núcleo Celular/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Células HeLa , Humanos , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Señales de Localización Nuclear , Proteínas de Complejo Poro Nuclear/metabolismo , Unión Proteica , Isoformas de Proteínas/metabolismo , Estructura Secundaria de Proteína , Relación Estructura-Actividad , alfa Carioferinas/metabolismo
9.
Elife ; 72018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29517484

RESUMEN

The Anaphase Promoting Complex/Cyclosome (APC/C) is a ubiquitin E3 ligase that functions as the gatekeeper to mitotic exit. APC/C activity is controlled by an interplay of multiple pathways during mitosis, including the spindle assembly checkpoint (SAC), that are not yet fully understood. Here, we show that sumoylation of the APC4 subunit of the APC/C peaks during mitosis and is critical for timely APC/C activation and anaphase onset. We have also identified a functionally important SUMO interacting motif in the cullin-homology domain of APC2 located near the APC4 sumoylation sites and APC/C catalytic core. Our findings provide evidence of an important regulatory role for SUMO modification and binding in affecting APC/C activation and mitotic exit.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/genética , Subunidad Apc4 del Ciclosoma-Complejo Promotor de la Anafase/genética , Proteínas del Citoesqueleto/genética , Mitosis/genética , Anafase/genética , Ciclosoma-Complejo Promotor de la Anafase/química , Subunidad Apc4 del Ciclosoma-Complejo Promotor de la Anafase/química , Dominio Catalítico/genética , Proteínas del Citoesqueleto/química , Células HeLa , Humanos , Puntos de Control de la Fase M del Ciclo Celular/genética , Plásmidos/genética , Unión Proteica , Conformación Proteica , Huso Acromático/química , Huso Acromático/genética , Sumoilación/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
10.
J Mol Med (Berl) ; 95(8): 799-807, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28681078

RESUMEN

A decade has passed since the first reported connection between RAP80 and BRCA1 in DNA double-strand break repair. Despite the initial identification of RAP80 as a factor localizing BRCA1 to DNA double-strand breaks and potentially promoting homologous recombination, there is increasing evidence that RAP80 instead suppresses homologous recombination to fine-tune the balance of competing DNA repair processes during the S/G2 phase of the cell cycle. RAP80 opposes homologous recombination by inhibiting DNA end-resection and sequestering BRCA1 into the BRCA1-A complex. Ubiquitin and SUMO modifications of chromatin at DNA double-strand breaks recruit RAP80, which contains distinct sequence motifs that recognize ubiquitin and SUMO. Here, we review RAP80's role in repressing homologous recombination at DNA double-strand breaks and how this role is facilitated by its ability to bind ubiquitin and SUMO modifications.


Asunto(s)
Proteínas Portadoras/genética , Daño del ADN , Proteínas Nucleares/genética , Proteína SUMO-1/genética , Ubiquitina/genética , Animales , Proteína BRCA1/química , Proteína BRCA1/genética , Proteínas Portadoras/química , Proteínas de Unión al ADN , Chaperonas de Histonas , Recombinación Homóloga , Humanos , Proteínas Nucleares/química , Estructura Secundaria de Proteína , Proteína SUMO-1/química , Ubiquitina/química
11.
Mol Cell Proteomics ; 16(5): 812-823, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28254775

RESUMEN

SUMOylation is a critical regulator of a broad range of cellular processes, and is thought to do so in part by modulation of protein interaction. To comprehensively identify human proteins whose interaction is modulated by SUMOylation, we developed an in vitro binding assay using human proteome microarrays to identify targets of SUMO1 and SUMO2. We then integrated these results with protein SUMOylation and protein-protein interaction data to perform network motif analysis. We focused on a single network motif we termed a SUMOmodPPI (SUMO-modulated Protein-Protein Interaction) that included the INO80 chromatin remodeling complex subunits TFPT and INO80E. We validated the SUMO-binding activity of INO80E, and showed that TFPT is a SUMO substrate both in vitro and in vivo We then demonstrated a key role for SUMOylation in mediating the interaction between these two proteins, both in vitro and in vivo By demonstrating a key role for SUMOylation in regulating the INO80 chromatin remodeling complex, this work illustrates the power of bioinformatics analysis of large data sets in predicting novel biological phenomena.


Asunto(s)
Ensamble y Desensamble de Cromatina , ADN Helicasas/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , ATPasas Asociadas con Actividades Celulares Diversas , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , ADN Helicasas/química , Proteínas de Unión al ADN , Ontología de Genes , Humanos , Lisina/metabolismo , Chaperonas Moleculares/metabolismo , Análisis por Matrices de Proteínas , Unión Proteica , Dominios Proteicos , Proteínas Inhibidoras de STAT Activados/metabolismo , Mapas de Interacción de Proteínas , Proteoma/metabolismo
12.
PLoS Genet ; 13(2): e1006612, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28166236

RESUMEN

Sumoylation regulates a wide range of essential cellular functions through diverse mechanisms that remain to be fully understood. Using S. cerevisiae, a model organism with a single essential SUMO gene (SMT3), we developed a library of >250 mutant strains with single or multiple amino acid substitutions of surface or core residues in the Smt3 protein. By screening this library using plate-based assays, we have generated a comprehensive structure-function based map of Smt3, revealing essential amino acid residues and residues critical for function under a variety of genotoxic and proteotoxic stress conditions. Functionally important residues mapped to surfaces affecting Smt3 precursor processing and deconjugation from protein substrates, covalent conjugation to protein substrates, and non-covalent interactions with E3 ligases and downstream effector proteins containing SUMO-interacting motifs. Lysine residues potentially involved in formation of polymeric chains were also investigated, revealing critical roles for polymeric chains, but redundancy in specific chain linkages. Collectively, our findings provide important insights into the molecular basis of signaling through sumoylation. Moreover, the library of Smt3 mutants represents a valuable resource for further exploring the functions of sumoylation in cellular stress response and other SUMO-dependent pathways.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Relación Estructura-Actividad , Sumoilación/efectos de los fármacos , Sustitución de Aminoácidos/genética , Análisis Mutacional de ADN , Mutagénesis/genética , Mutágenos/toxicidad , Unión Proteica , Saccharomyces cerevisiae/química , Ubiquitina-Proteína Ligasas/genética
13.
Methods Mol Biol ; 1475: 3-22, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27631794

RESUMEN

Protein modification by the small ubiquitin-related modifier (SUMO) was simultaneously discovered by several groups at the middle of the 1990s. Although distinct names were proposed including Sentrin, GMP1, PIC1, or SMT3, SUMO became the most popular. Early studies on the functions of SUMOylation focused on activities in the nucleus, including transcription activation, chromatin structure, and DNA repair. However, it is now recognized that SUMOylation affects a large diversity of cellular processes both in the nucleus and the cytoplasm and functions of SUMOylation appear to have undefined limits. SUMO-conjugating enzymes and specific proteases actively regulate the modification status of target proteins. The recent discoveries of ubiquitin-SUMO hybrid chains, multiple SUMO-interacting motifs, and macromolecular complexes regulated by SUMOylation underscore the high complexity of this dynamic reversible system. New conceptual frameworks suggested by these findings have motivated the development of new methodologies to study pre- and post-SUMOylation events in vitro and in vivo, using distinct model organisms. Here we summarize some of the new developments and methodologies in the field, particularly those that will be further elaborated on in the chapters integrating this book.


Asunto(s)
Cromatina/metabolismo , Cisteína Endopeptidasas/metabolismo , Células Eucariotas/metabolismo , Procesamiento Proteico-Postraduccional , Proteómica/historia , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Animales , Cromatina/química , Cisteína Endopeptidasas/genética , Células Eucariotas/citología , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Plantas/genética , Plantas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteómica/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Sumoilación
14.
Methods Mol Biol ; 1475: 283-90, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27631812

RESUMEN

Reversible protein modification by small ubiquitin-related modifiers (SUMOs) regulates many cellular processes, including transcription, protein quality control, cell division, and oxidative stress. SUMOylation is therefore essential for normal cell function and represents a potentially valuable target for the development of inhibitors of pathogenic eukaryotic organisms, including the malaria parasite, Plasmodium falciparum (Pf). The specific and essential functions of SUMOylation in Pf, however, remain largely uncharacterized. The further development of antimalarial drugs targeting SUMOylation would benefit significantly from a more detailed understanding of its functions and regulation during the parasite life cycle. The recent development of antibodies specific for Pf SUMO provides a valuable tool to study the functions and regulation of SUMOylation. In preliminary studies, we have used immunoblot analysis to demonstrate that SUMOylation levels vary significantly in parasites during different stages of the red blood cell cycle and also in response to oxidative stress. Owing to the dynamic nature of SUMOylation and to the robust activity of SUMO isopeptidases, analysis of SUMOylation in cultured Pf parasites requires a number of precautions during parasite purification and lysis. Here, we outline methods for preserving SUMO conjugates during isolation of Pf parasites from human red blood cell cultures, and for their detection by immunoblot analysis using PfSUMO-specific antibodies.


Asunto(s)
Estadios del Ciclo de Vida/genética , Plasmodium falciparum/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Protozoarias/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Anticuerpos/química , Western Blotting , División Celular , Electroforesis en Gel de Poliacrilamida , Eritrocitos , Humanos , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Protozoarias/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Sumoilación , Transcripción Genética
16.
J Biol Chem ; 291(17): 9014-24, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-26917720

RESUMEN

Thymine-DNA glycosylase (TDG) plays critical roles in DNA base excision repair and DNA demethylation. It has been proposed, based on structural studies and in vitro biochemistry, that sumoylation is required for efficient TDG enzymatic turnover following base excision. However, whether sumoylation is required for TDG activity in vivo has not previously been tested. We have developed an in vivo assay for TDG activity that takes advantage of its recently discovered role in DNA demethylation and selective recognition and repair of 5-carboxylcytosine. Using this assay, we investigated the role of sumoylation in regulating TDG activity through the use of TDG mutants defective for sumoylation and Small Ubiquitin-like Modifier (SUMO) binding and by altering TDG sumoylation through SUMO and SUMO protease overexpression experiments. Our findings indicate that sumoylation and SUMO binding are not essential for TDG-mediated excision and repair of 5-carboxylcytosine bases. Moreover, in vitro assays revealed that apurinic/apyrimidinic nuclease 1 provides nearly maximum stimulation of TDG processing of G·caC substrates. Thus, under our assay conditions, apurinic/apyrimidinic nuclease 1-mediated stimulation or other mechanisms sufficiently alleviate TDG product inhibition and promote its enzymatic turnover in vivo.


Asunto(s)
Citosina/análogos & derivados , Metilación de ADN/fisiología , Mutación , Proteína SUMO-1/metabolismo , Sumoilación/fisiología , Timina ADN Glicosilasa/metabolismo , Citosina/metabolismo , Células HEK293 , Humanos , Proteína SUMO-1/genética , Timina ADN Glicosilasa/genética
17.
J Biol Chem ; 291(8): 3860-70, 2016 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-26697886

RESUMEN

Protein modification by small ubiquitin-related modifiers (SUMOs) is essential and conserved in the malaria parasite, Plasmodium falciparum. We have previously shown that interactions between the SUMO E1-activating and E2-conjugating enzyme in P. falciparum are distinct compared with human, suggesting a potential target for development of parasite-specific inhibitors of SUMOylation. The parasite asexual trophozoite stage is susceptible to iron-induced oxidative stress and is subsequently a target for many of the current anti-malarial drugs. Here, we provide evidence that SUMOylation plays a role in the parasite response to oxidative stress during red blood cell stages, indicative of a protective role seen in other organisms. Using x-ray crystallography, we solved the structure of the human SUMO E1 ubiquitin fold domain in complex with the E2, Ubc9. The interface defined in this structure guided in silico modeling, mutagenesis, and in vitro biochemical studies of the P. falciparum SUMO E1 and E2 enzymes, resulting in the identification of surface residues that explain species-specific interactions. Our findings suggest that parasite-specific inhibitors of SUMOylation could be developed and used in combination therapies with drugs that induce oxidative stress.


Asunto(s)
Modelos Moleculares , Plasmodium falciparum/enzimología , Proteínas Protozoarias/química , Enzimas Ubiquitina-Conjugadoras/química , Humanos , Estrés Oxidativo/fisiología , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Especificidad de la Especie , Sumoilación/fisiología , Trofozoítos/química , Trofozoítos/enzimología , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo
18.
Nature ; 525(7567): 56-61, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26308891

RESUMEN

The hexanucleotide repeat expansion (HRE) GGGGCC (G4C2) in C9orf72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Recent studies support an HRE RNA gain-of-function mechanism of neurotoxicity, and we previously identified protein interactors for the G4C2 RNA including RanGAP1. A candidate-based genetic screen in Drosophila expressing 30 G4C2 repeats identified RanGAP (Drosophila orthologue of human RanGAP1), a key regulator of nucleocytoplasmic transport, as a potent suppressor of neurodegeneration. Enhancing nuclear import or suppressing nuclear export of proteins also suppresses neurodegeneration. RanGAP physically interacts with HRE RNA and is mislocalized in HRE-expressing flies, neurons from C9orf72 ALS patient-derived induced pluripotent stem cells (iPSC-derived neurons), and in C9orf72 ALS patient brain tissue. Nuclear import is impaired as a result of HRE expression in the fly model and in C9orf72 iPSC-derived neurons, and these deficits are rescued by small molecules and antisense oligonucleotides targeting the HRE G-quadruplexes. Nucleocytoplasmic transport defects may be a fundamental pathway for ALS and FTD that is amenable to pharmacotherapeutic intervention.


Asunto(s)
Transporte Activo de Núcleo Celular/genética , Núcleo Celular/metabolismo , Expansión de las Repeticiones de ADN/genética , Sistemas de Lectura Abierta/genética , Proteínas/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Proteína C9orf72 , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Femenino , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , G-Cuádruplex , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas/metabolismo , Neuronas/patología , Poro Nuclear/química , Poro Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Oligonucleótidos Antisentido/genética , ARN/genética , ARN/metabolismo
19.
Proteomics ; 15(4): 763-72, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25367092

RESUMEN

Sumoylation is essential for progression through mitosis, but the specific protein targets and functions remain poorly understood. In this study, we used chromosome spreads to more precisely define the localization of SUMO-2/3 (small ubiquitin-related modifier) to the inner centromere and protein scaffold of mitotic chromosomes. We also developed methods to immunopurify proteins modified by endogenous, untagged SUMO-2/3 from mitotic chromosomes. Using these methods, we identified 149 chromosome-associated SUMO-2/3 substrates by nLC-ESI-MS/MS. Approximately one-third of the identified proteins have reported functions in mitosis. Consistent with SUMO-2/3 immunolocalization, we identified known centromere- and kinetochore-associated proteins, as well as chromosome scaffold associated proteins. Notably, >30 proteins involved in chromatin modification or remodeling were identified. Our results provide insights into the roles of sumoylation as a regulator of chromatin structure and other diverse processes in mitosis. Furthermore, our purification and fractionation methodologies represent an important compliment to existing approaches to identify sumoylated proteins using exogenously expressed and tagged SUMOs.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Cromosomas/metabolismo , Mitosis/fisiología , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación/fisiología , Proteínas Cromosómicas no Histona/análisis , Proteínas Cromosómicas no Histona/química , Células HeLa , Humanos , Mapas de Interacción de Proteínas , Proteómica , Reproducibilidad de los Resultados , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/análisis , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/química
20.
PLoS One ; 9(8): e105271, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25133527

RESUMEN

SUMO-binding proteins interact with SUMO modified proteins to mediate a wide range of functional consequences. Here, we report the identification of a new SUMO-binding protein, ZNF261. Four human proteins including ZNF261, ZNF198, ZNF262, and ZNF258 contain a stretch of tandem zinc fingers called myeloproliferative and mental retardation (MYM)-type zinc fingers. We demonstrated that MYM-type zinc fingers from ZNF261 and ZNF198 are necessary and sufficient for SUMO-binding and that individual MYM-type zinc fingers function as SUMO-interacting motifs (SIMs). Our binding studies revealed that the MYM-type zinc fingers from ZNF261 and ZNF198 interact with the same surface on SUMO-2 recognized by the archetypal consensus SIM. We also present evidence that MYM-type zinc fingers in ZNF261 contain zinc, but that zinc is not required for SUMO-binding. Immunofluorescence microscopy studies using truncated fragments of ZNF198 revealed that MYM-type zinc fingers of ZNF198 are necessary for localization to PML-nuclear bodies (PML-NBs). In summary, our studies have identified and characterized the SUMO-binding activity of the MYM-type zinc fingers in ZNF261 and ZNF198.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Proteína SUMO-1/metabolismo , Factores de Transcripción/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ADN/química , Humanos , Inmunoprecipitación , Microscopía Fluorescente , Proteínas Nucleares/química , Unión Proteica , Factores de Transcripción/química , Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...