Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Nano Lett ; 13(6): 2338-45, 2013 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-23472703

RESUMEN

Fast current intermittency of the tunneling current through single semiconductor quantum dots was observed through time-resolved intermittent contact conductive atomic force microscopy in the dark and under illumination at room temperature. The current through a single dot switches on and off at time scales ranging from microseconds to seconds with power-law distributions for both the on and off times. On states are attributed to the resonant tunneling of charges from the electrically conductive AFM tip to the quantum dot, followed by transfer to the substrate, whereas off states are attributed to a Coulomb blockade effect in the quantum dots that shifts the energy levels out of resonance conditions due to the presence of the trapped charge, while at the same bias. The observation of current intermittency due to Coulomb blockade effects has important implications for the understanding of carrier transport through arrays of quantum dots.

2.
Nano Lett ; 13(3): 1278-84, 2013 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-23379602

RESUMEN

The electrostatic potential distribution across single, isolated, colloidal heterostructured nanorods (NRs) with component materials expected to form a p-n junction within each NR has been measured using scanning Kelvin probe microscopy (SKPM). We compare CdS to bicomponent CdS-CdSe, CdS-PbSe, and CdS-PbS NRs prepared via different synthetic approaches to corroborate the SKPM assignments. The CdS-PbS NRs show a sharp contrast in measured potential across the material interface. We find the measured built-in potential within an individual NR to be attenuated by long-range electrostatic forces between the sample substrate, cantilever, and the measuring tip. Surface potential images were deconvoluted to yield built-in potentials ranging from 375 to 510 meV in the heterostructured NRs. We deduce the overall built-in potential as well as the charge distribution across each segment of the heterostructured NRs by combining SKPM data with simulations of the system.

4.
ACS Nano ; 4(3): 1385-92, 2010 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-20184387

RESUMEN

Scanning tunneling microscopy and spectroscopy have been used to measure the local photovoltaic performance of prototypical polymer:fullerene (MDMO-PPV:PCBM) bulk heterojunction films with approximately 10 nm resolution. Fullerene-rich clusters are found to act as sinks, extracting electrons from a shell layer of a homogeneously mixed polymer:fullerene matrix, surrounding the fullerene cluster. The experimental results were quantitatively modeled with a drift-diffusion model that in first order accounts for the specific morphology. The same model has subsequently been used to calculate performance indicators of macroscopic solar cells as a function of film composition and characteristic size of the phase separation. As such, a first step has been set toward a quantitative correlation between nanoscopic and macroscopic device photovoltaic performance.

5.
Nat Mater ; 8(8): 672-6, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19543278

RESUMEN

Static p-n junctions in inorganic semiconductors are exploited in a wide range of today's electronic appliances. Here, we demonstrate the in situ formation of a dynamic p-n junction structure within an organic semiconductor through electrochemistry. Specifically, we use scanning kelvin probe microscopy and optical probing on planar light-emitting electrochemical cells (LECs) with a mixture of a conjugated polymer and an electrolyte connecting two electrodes separated by 120 microm. We find that a significant portion of the potential drop between the electrodes coincides with the location of a thin and distinct light-emission zone positioned >30 microm away from the negative electrode. These results are relevant in the context of a long-standing scientific debate, as they prove that electrochemical doping can take place in LECs. Moreover, a study on the doping formation and dissipation kinetics provides interesting detail regarding the electronic structure and stability of the dynamic organic p-n junction, which may be useful in future dynamic p-n junction-based devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...