Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 14(41): 9324-9328, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37819107

RESUMEN

The unique physical and chemical properties of ionic liquids (ILs) determine their numerous applications in "green" chemistry and material science. Recently, systems based on ILs have been considered to be promising for use in a new generation of electrochemical devices. The results of a nuclear magnetic resonance (NMR) study of the microstructure of 1-butyl-3-methylimidazolium chloride (IL)/water mixtures in the presence of Al3+ cations are presented. For the first time, the splitting of spectral lines of water in such systems has been recorded. Comparing the 1H and 27Al NMR data, we have detected the existence of different solvate complexes of Al3+ with Cl- and estimated the characteristic times of exchange processes. For the system under study, a model of the Al3+ cation environment and its evolution with temperature and water content has been described. Quantum-chemical calculations have been performed to substantiate the model.

2.
Polymers (Basel) ; 15(19)2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37836067

RESUMEN

More than five hundred images of individual macromolecules of random styrene-butadiene copolymers and styrene-isoprene block copolymers dissolved in a polystyrene matrix were analyzed. The presence of density fluctuations inside the macromolecular coil has been established. Within the framework of the model of harmonic oscillations, the radial distribution of such density fluctuations is estimated.

3.
Int J Mol Sci ; 24(19)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37833860

RESUMEN

A comparative study of anticorrosive inhibited polymer films on the tungsten surface formed from an aqueous solution of inhibited formulations (INFOR) containing organosilane and corrosion inhibitors was carried out by means of the prolonged exposure of a tungsten product in a modifying solution and by the method of cataphoretic deposition (CPD). Depending on the method of forming films on tungsten, the molecular organization of the near-surface layers was studied (ATR-FTIR), and the subprimary structure of the films was explored (TEM). The optimal modes of cataphoresis deposition (CPD duration and current density applied to the sample) for the formation of a protective inhibited polymer film on the tungsten surface were established by means of SEM. The energy and thermochemical characteristics (sessile drop and DSC methods), as well as operational (adhesive behavior) and protective filming ability (EIS and corrosion behavior), according to the method of formation of inhibited polymer film, were determined. Based on the combined characteristics of the films obtained by the two methods and the deposition modes, the CPD method showed better performance than the electroless dipping method.


Asunto(s)
Polímeros , Tungsteno , Polímeros/química , Tungsteno/química , Composición de Medicamentos , Películas Cinematográficas
4.
Membranes (Basel) ; 13(6)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37367791

RESUMEN

In the present work, the effect of divinylbenzene (DVB) on the kinetics of post-radiation chemical graft polymerization styrene (St) on polyethylene (PE) film and its structural and morphological features were investigated. It has been found that the dependence of the degree of polystyrene (PS) grafting on the DVB concentration in the solution is extreme. An increase in the rate of graft polymerization at low concentrations of DVB in the solution is associated with a decrease in the mobility of the growing chains of PS. A decrease in the rate of graft polymerization at high concentrations of DVB is associated with a decrease in the rate of diffusion of St and iron(II) ions in the cross-linked network structure of macromolecules of graft PS. A comparative analysis of the IR transmission and multiple attenuated total internal reflection spectra of the films with graft PS shows that graft polymerization of St in the presence of DVB leads to the enrichment of the film surface layers in PS. These results have been confirmed by the data on the distribution of sulfur in these films after sulfonation. The micrographs of the surface of the grafted films show the formation of cross-linked local microphases of PS with fixed interfaces.

5.
Biochemistry (Mosc) ; 88(1): 119-130, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37068873

RESUMEN

The amino acid sequences of the coat proteins (CPs) of the potexviruses potato virus X (PVX) and alternanthera mosaic virus (AltMV) share ~40% identity. The N-terminal domains of these proteins differ in the amino acid sequence and the presence of the N-terminal fragment of 28 residues (ΔN peptide) in the PVX CP. Here, we determined the effect of the N-terminal domain on the structure and physicochemical properties of PVX and AltMV virions. The circular dichroism spectra of these viruses differed significantly, and the melting point of PVX virions was 10-12°C higher than that of AltMV virions. Alignment of the existing high-resolution 3D structures of the potexviral CPs showed that the RMSD value between the Cα-atoms was the largest for the N-terminal domains of the two compared models. Based on the computer modeling, the ΔN peptide of the PVX CP is fully disordered. According to the synchrotron small-angle X-ray scattering (SAXS) data, the structure of CPs from the PVX and AltMV virions differ; in particular, the PVX CP has a larger portion of crystalline regions and, therefore, is more ordered. Based on the SAXS data, the diameters of the PVX and AltMV virions and helix parameters in solution were calculated. The influence of the conformation of the PVX CP N-terminal domain and its position relative to the virion surface on the virion structure was investigated. Presumably, an increased thermal stability of PVX virions vs. AltMV is provided by the extended N-terminal domain (ΔN peptide, 28 amino acid residues), which forms additional contacts between the adjacent CP subunits in the PVX virion.


Asunto(s)
Potexvirus , Potexvirus/química , Potexvirus/metabolismo , Proteínas de la Cápside/metabolismo , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Virión/metabolismo
6.
Polymers (Basel) ; 14(4)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35215586

RESUMEN

The study of spectra of internal friction λ=fT and temperature dependencies of frequency of freely damped ν=fT oscillatory process excited in investigated samples of polyethylene with different degree of crystallinity in the temperature range from -150 °C to +150 °C. It is established that four local dissipative processes of different intensity shown in different temperature intervals are observed on the spectra λ=fT. These are µ, ß, α, ßk processes. The theoretical analysis of the relationship between the anomalous changes of the vibrational process frequency ν=fT and the shift modulus defect ΔG=fT and the internal friction mechanisms for each of the dissipative loss processes detected on the spectrum λ=fT is carried out. The influence of supramolecular structures on local dissipative ßk process in polyethylene is estimated.

7.
Magn Reson Chem ; 60(2): 221-225, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34561911

RESUMEN

The closest environment of Al3+ cations was analyzed in detail in solutions of aluminum nitrate in the prototypical protic ionic liquid ethyl ammonium nitrate (EAN) using 1 H and 14 N nuclear magnetic resonance (NMR) spectra. For Al (NO3 )3 -EAN mixtures with different water content, a quantitative analysis of the integral intensities of the 1 H and 14 N signals was carried out and the composition of the first solvation shell of the aluminum cation was refined.


Asunto(s)
Líquidos Iónicos , Compuestos de Aluminio/química , Líquidos Iónicos/química , Espectroscopía de Resonancia Magnética , Nitratos
8.
Polymers (Basel) ; 12(4)2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-32290178

RESUMEN

Cross-linking of polysaccharides by metal ions provides polymer gels highly required by industrial applications. In this article, we study the rheological properties and microstructure of solutions of a stiff anionic polysaccharide xanthan cross-linked by chromium (III) ions, and we demonstrate that their properties are highly sensitive to the preparation pH. Stable gels are obtained in a wide range of pH from 2.4 to 7.8. The maximum elastic modulus is observed for the gels made at pH 6.3, and by freeze-fracture transmission electron microscopy it is shown that they are characterized by the most dense network structure. However, out of this pH interval, no gelation is observed. At low pH (< 2.4) it is due to high protonation of carboxylic groups of xanthan preventing their interaction with chromium ions, and to the disappearance of oligomeric ions, which are effective in cross-linking. At high pH (> 7.8) the absence of gelation is caused by the transformation of reactive chromium ions into insoluble chromium hydroxide. At the same time, for the gels initially formed at pH 6.3, subsequent change of pH to strongly acidic (1.4) or basic (8.9) medium does not affect appreciably their properties, meaning that chromium cross-links are stable once they are formed. These observations open a reliable route to produce polysaccharide gels with required mechanical properties in a wide pH range where they initially cannot be prepared. It is also shown that the increase of pH to 6.3 of the initially ungelled solution prepared at pH 1.5 results in gelation. This effect offers a facile way for delayed gelation of polysaccharides, which is especially required by oil industry.

9.
J Phys Chem B ; 123(43): 9187-9197, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31591890

RESUMEN

As the development of the work (J. Phys. Chem. B 2019, 123 (10), 2362-2372), we have investigated the translational mobility in the same set of dried imidazolium-based ionic liquids (ILs) [bmim]A (A = BF4-, NO3-, TfO-, I-, Br-, and Cl-) in a wide temperature range using the NMR technique. It is shown that for the [bmim]+ cation, the temperature dependencies of product Dη do not follow the Stokes-Einstein relation for most systems studied, that is, the so-called "diffusion-viscosity decoupling" was realized. The correlation between local and translational mobility in pure IL of the [bmim][A] type was investigated using the data on NMR relaxation rates and diffusion coefficients. The most recent hypothesis of "water pockets" in mixtures of IL with water is critically discussed. Considering the totality of data in the literature and obtained here, we propose a specific model of the microstructure which may be applied up to water concentrations of 80-90 mol % (the structure of water-rich solutions is out of our current consideration). To confirm the model, molecular dynamics simulations of "IL-water" mixtures were also carried out.

10.
Prog Biophys Mol Biol ; 149: 114-130, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30965040

RESUMEN

Cell theory, as formulated by Theodor Schwann in 1839, introduced the idea that the cell is the main structural unit of living nature. Later, in solving the problem of cell multiplication, Rudolf Virchow expanded the cell theory with a postulate: all cells only arise from pre-existing cells. But what did the very first cell arise from? This paper proposes extending the Virchow's law by the assumption that between the nonliving protocell and the first living cell the continuity of fundamental physical properties (the principle of invariance of physical properties) is preserved. The protocell is understood here as a cell-shaped physical system on the basis of the self-organized biologically significant prebiotic macromolecules, primarily peptides, having a potential to transform into the living cell. Biophase is considered as the physical basis of the membraneless protocell, the internal environment of which is separated from the external environment due to the phase of adsorbed water. The evidence is given that the first protocells may have been formed on the basis of intrinsically disordered peptides. Data on the similarity of the physical properties of living cells and the following model systems are given: protein and artificial polymer solutions, coacervate droplets, and ion-exchange resin granules. Available data on the similarity of the physical properties of cell models and living cells allow us to rephrase the Virchow's postulate as follows: the physical properties of a living cell could only arise from pre-existing physical properties of the protocell.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Adsorción , Células Artificiales/química , Células Artificiales/metabolismo , Evolución Biológica , Fenómenos Biofísicos , Línea Celular , Epigénesis Genética , Modelos Biológicos , Compuestos Orgánicos/química , Origen de la Vida , Péptidos/química , Péptidos/metabolismo , Transición de Fase , Polímeros/química , Termodinámica
11.
J Phys Chem B ; 123(10): 2362-2372, 2019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-30779569

RESUMEN

The detailed investigation of the local mobility in a set of dried imidazolium-based ionic liquids (1-butyl-3-methylimidazolium) in a wide temperature range and varying anions (BF4-, I-, Cl-, Br-, NO3-, TfO-) is presented. The measurements of temperature dependencies of the spin-lattice relaxation times of 1H and 13C nuclei are motivated by the need to obtain a fundamental characterization of molecular mobility of the substances under study, namely, to estimate the correlation times, τc, for the motion of individual molecular groups. In particular, it follows from obtained results that the mobility of the hydrocarbon "tail" is higher (smaller τc) than that of the imidazole ring, and this expected tendency is quantified. The effect of the influence of an anion type on the cation mobility is also analyzed.

12.
Magn Reson Chem ; 56(2): 140-143, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29127740

RESUMEN

Temperature dependences are compared for 1 H and 13 C NMR 1/T1 curves relaxation rates in three imidazolium-based ionic liquids (ILs), namely, in [bmim]PF6 , [bmim]BF4 , and [emim]CH3 COO. 13 C curves show alike behavior for all three ILs and follow a well-known Bloembergen-Pound-Purcell (BPP) equation. On the contrary, an essential part of 1 H curves differ strongly from corresponding 13 C ones and also have different shapes for different ILs. For the first time, we have detected the specific, two-maximum shape of 1 H relaxation curve for hydrogen atom of C(2)H group of the [emim]CH3 COO. Assuming that this maximum reflects the correlated rotation of several adjoining ion pairs, we have tried to destroy this rotation by addition of glycerol to the [emim]CH3 COO. The second, high-temperature maximum has disappeared in the [emim]CH3 COO-glycerol mixture, and this fact confirms our assumption. Copyright © 2017 John Wiley & Sons, Ltd.

13.
Sci Rep ; 7(1): 13710, 2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-29057955

RESUMEN

Melts of polybutylcarbosilane (PBC) dendrimers from third (G3) up to sixth (G6) generations are investigated by 1H NMR spectroscopy in a wide temperature range up to 493 K. At room temperature, NMR spectra of G3-G5 dendrimers exhibit resolved, solution-like spectra ("liquid" phase). In contrast, the spectrum of the G6 dendrimer is characterized by a single unresolved broad line at whole temperature range, which supports the presence of an anomalous phase state of G6 at temperatures higher than glass transition temperature. For the first time, an unexpected transition of G5 dendrimer from a molecular liquid state to an anomalous state/phase upon temperature increase has been detected using NMR data. Specifically, an additional wide background line appears in the G5 spectrum above 473 K, and this line corresponds to a G5 state characterized by restricted molecular mobility, i.e., a state similar to the "anomalous" phase of G6 melt. The fraction of the G5 dendrimers in "anomalous" phase at 493 K is approximately 40%. Analysis of the spectral shapes suggests that changes in the G5 dendrimers are reversible with temperature.

14.
Sci Rep ; 6: 24270, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-27052599

RESUMEN

We have studied copolymer dendrimer structure: carbosilane dendrimers with terminal phenylbenzoate mesogenic groups attached by poly(ethylene) glycol (PEG) spacers. In this system PEG spacers are additional tuning to usual copolymer structure: dendrimer with terminal mesogenic groups. The dendrimer macromolecules were investigated in a dilute chloroform solution by (1)H NMR methods (spectra and relaxations). It was found that the PEG layer in G = 5 generations dendrimer is "frozen" at high temperatures (above 260 K), but it unexpectedly becomes "unfrozen" at temperatures below 250 K (i.e., melting when cooling). The transition between these two states occurs within a small temperature range (~10 K). Such a behavior is not observed for smaller dendrimer generations (G = 1 and 3). This effect is likely related to the low critical solution temperature (LCST) of PEG and is caused by dendrimer conformations, in which the PEG group concentration in the layer increases with growing G. We suppose that the unusual behavior of PEG fragments in dendrimers will be interesting for practical applications such as nanocontainers or nanoreactors.

15.
Phys Chem Chem Phys ; 17(5): 3214-26, 2015 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-25519227

RESUMEN

NMR relaxation experiments are widely used to investigate the local orientation mobility in dendrimers. In particular, the NMR method allows one to measure the spin-lattice relaxation rate, 1/T1, which is connected with the orientational autocorrelation function (ACF) of NMR active groups. We calculate the temperature (Θ) and frequency (ω) dependences of the spin-lattice NMR relaxation rates for segments and NMR active CH2 groups in poly-L-lysine (PLL) dendrimers in water, on the basis of full-atomic molecular dynamics simulations. It is shown that the position of the maximum of 1/T1(ω) depends on the location of the segments inside the dendrimer. This dependence of the maximum is explained by the restricted flexibility of the dendrimer. Such behavior has been predicted recently by the analytical theory based on the semiflexible viscoelastic model. The simulated temperature dependences of 1/T1 for terminal and inner groups in PLL dendrimers of n = 2 and n = 4 generations dissolved in water are in good agreement with the NMR experimental data, which have been obtained for these systems previously by us. It is shown that in the case of PLL dendrimers, the traditional procedure of the interpretation of NMR experimental data - when smaller values of 1/T1 correspond to higher orientation mobility - is applicable to the whole accessible frequency interval only for the terminal groups. For the inner groups, this procedure is valid only at low frequencies.


Asunto(s)
Dendrímeros/química , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Polilisina/química , Elasticidad , Temperatura , Viscosidad , Agua/química
16.
Phys Chem Chem Phys ; 16(22): 10480-4, 2014 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-24733492

RESUMEN

The temperature dependencies of (13)C NMR relaxation rates in [bmim]PF6 ionic liquid have been measured and the characteristic times (τc) for the cation reorientation have been recalculated. We found the origin of the incorrect τc temperature dependencies that were earlier reported for ring carbons in a number of imidazolium-based ILs. After a correction of the approach (13)C T1, the relaxation data allowed us to obtain the characteristic times for an orientation mobility of each carbon, and a complicated experiment, such as NOE, was not required. Thus the applicability of (13)C NMR relaxation rate measurements to the calculation of the characteristic times for reorientation of all the carbons of the [bmim](+) cation was confirmed and our findings have shown that a (13)C NMR relaxation technique allowed its application to ionic liquids to be equally successful as for other liquid systems.

17.
J Chem Phys ; 135(12): 124901, 2011 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-21974558

RESUMEN

A new theoretical description of the interior mobility of carbosilane dendrimers has been tested. Experiments were conducted using measurements of the (1)H NMR spin-lattice relaxation time, T(1H), of two-, three- and four-generation carbosilane dendrimers with three different types of terminal groups in dilute chloroform solutions. Temperature dependences of the NMR relaxation rate, 1/T(1H), were obtained for the internal CH(2)-groups of the dendrimers in the range of 1/T(1H) maximum, allowing us to directly evaluate the average time of the internal spectrum for each dendrimer. It was found that the temperature of 1/T(1H) maximum is practically independent of the number of generations, G; therefore, the theoretical prediction was confirmed experimentally. In addition, the average time of the internal spectrum of carbosilane dendrimers was found to be near 0.2 ns at room temperature, and this value correlates well with the values previously obtained for other dendrimer structures using other experimental techniques.


Asunto(s)
Dendrímeros/química , Silanos/química , Dendrímeros/síntesis química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Estructura Molecular , Silanos/síntesis química , Factores de Tiempo
18.
Theor Biol Med Model ; 7: 19, 2010 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-20534114

RESUMEN

According to the hypothesis explored in this paper, native aggregation is genetically controlled (programmed) reversible aggregation that occurs when interacting proteins form new temporary structures through highly specific interactions. It is assumed that Anfinsen's dogma may be extended to protein aggregation: composition and amino acid sequence determine not only the secondary and tertiary structure of single protein, but also the structure of protein aggregates (associates). Cell function is considered as a transition between two states (two states model), the resting state and state of activity (this applies to the cell as a whole and to its individual structures). In the resting state, the key proteins are found in the following inactive forms: natively unfolded and globular. When the cell is activated, secondary structures appear in natively unfolded proteins (including unfolded regions in other proteins), and globular proteins begin to melt and their secondary structures become available for interaction with the secondary structures of other proteins. These temporary secondary structures provide a means for highly specific interactions between proteins. As a result, native aggregation creates temporary structures necessary for cell activity."One of the principal objects of theoretical research in any department of knowledge is to find the point of view from which the subject appears in its greatest simplicity."Josiah Willard Gibbs (1839-1903).


Asunto(s)
Células , Proteínas/química , Transducción de Señal , Estructura Secundaria de Proteína , Proteínas/metabolismo
19.
J Phys Chem B ; 114(12): 4159-65, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20201498

RESUMEN

The 4-generation carbosilane dendrimer with terminal cyanobiphenyl mesogenic groups in dilute solution of CDCl(3) was investigated using (1)H NMR technique. The spectrum was obtained and the relaxation time, T(1), was measured in the temperature range 320-225 K. For the first time, the extrema of T(1) values were achieved for majority of the dendrimer functional groups. The values of activation energies of the dendrimer functional groups were obtained. The relaxation data for outer and inner methyl groups show that the dendrimer investigated has dense corona and hollow core. This structure is formed because the mesogenic groups do not allow terminal segments to penetrate into the dendrimer, that is, the backfolding effect is absent. The NMR spectral and relaxation data give evidence for changing conformation of the dendrimer internal segments with decreasing temperature. This reorganization is most likely connected with a change of dendrimer size. We suppose that our experimental results will provide additional information for understanding principles of dendrimer nanocontainer operation. NMR can possibly be a tool for indicating the encapsulation effect as well as the dendrimer effective size.


Asunto(s)
Dendrímeros/química , Espectroscopía de Resonancia Magnética/métodos , Silanos/química
20.
J Chem Phys ; 130(4): 044907, 2009 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-19191413

RESUMEN

The developed theory of the orientational mobility of individual segments of a perfectly branched dendrimer is used to calculate the relaxation spectrum of a dendrimer. Frequency dependences of NMR relaxation 1/T(1) and of the nuclear Overhauser effect have been theoretically calculated from the Brownian dynamics simulation data. The dendrimer segmental orientational mobility is governed by three main relaxation processes: (i) the rotation of the dendrimer as a whole, (ii) the rotation of the dendrimer's branch originated from a given segment, and (iii) the local reorientation of the segment. The internal orientational mobility of an individual dendrimer segment depends only on the topological distance between this segment and the terminal shell of the dendrimer. Characteristic relaxation times of all processes and their contributions to the segmental mobility have been calculated. The influence of the number of generations and the number of the generation shell on the relaxation times has been studied. The correlation between the characteristic times and the calculated relaxation spectrum of the dendrimer has been established.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA