Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 436: 129151, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35739697

RESUMEN

Long term field studies are required to bridge gaps between research and practical application of arsenic phytoextraction with the arsenic-hyperaccumulating fern Pteris vittata. In a 4-year field study, we investigated the effects of nutrient application (compost, inorganic or organic nitrogen, inorganic or organic phosphorus) and soil texture (13 % and 35 % clay) on arsenic phytoextraction with P. vittata in moderately contaminated soils (74-79 mg As/kg in the 0-15 cm depth interval). We found the highest phytoextraction rates, 5 ± 1 kg As/ha/y, in a coarse-textured compost-amended soil after 2 years of phytoextraction. Phytoextraction rates decreased over time, likely due to decreased root growth in mature stands, indicating plants should be replaced every 2-3 years to maintain phytoextraction efficiency. Across soil textures, nitrogen or phosphorus application led to a 60 % decrease in mean frond arsenic concentrations, leading to mean phytoextraction rates 54 % lower than in control ferns. In the fine-textured soil, frond arsenic concentrations were 54 % lower than in the coarse-textured soil, and fewer ferns survived from year 3 to 4. Across soil textures, compost application increased fern survival. We show that phytoextraction with P. vittata is limited to specific soil and climate conditions, narrower than those under which P. vittata grows in the wild.


Asunto(s)
Arsénico , Helechos , Pteris , Contaminantes del Suelo , Arsénico/análisis , Biodegradación Ambiental , Nitrógeno/farmacología , Fósforo/farmacología , Suelo , Contaminantes del Suelo/análisis
2.
Sci Total Environ ; 818: 151803, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-34808151

RESUMEN

Plant-soil interactions affect arsenic and nutrient availability in arsenic-contaminated soils, with implications for arsenic uptake and tolerance in plants, and leaching from soil. In 22-week column experiments, we grew the arsenic hyperaccumulating fern Pteris vittata in a coarse- and a medium-textured soil to determine the effects of phosphorus fertilization and mycorrhizal fungi inoculation on P. vittata arsenic uptake and arsenic leaching. We investigated soil arsenic speciation using synchrotron-based spectromicroscopy. Greater soil arsenic availability and lower nutrient content in the coarse-textured soil were associated with greater fern arsenic uptake, lower biomass (apparently a metabolic cost of tolerance), and arsenic leaching from soil, due to lower transpiration. P. vittata hyperaccumulated arsenic from coarse- but not medium-textured soil. Mass of plant-accumulated arsenic was 1.2 to 2.4 times greater, but aboveground biomass was 74% smaller, in ferns growing in coarse-textured soil. In the presence of ferns, mean arsenic loss by leaching was 195% greater from coarse- compared to the medium-textured soil, and lower across both soils compared to the absence of ferns. In the medium-textured soil arsenic concentrations in leachate were higher in the presence of ferns. Fern arsenic uptake was always greater than loss by leaching. Most arsenic (>66%) accumulated in P. vittata appeared of rhizosphere origin. In the medium-textured soil with more clay and higher nutrient content, successful iron scavenging increased arsenic release from soil for leaching, but transpiration curtailed leaching.


Asunto(s)
Arsénico , Pteris , Contaminantes del Suelo , Arsénico/análisis , Biodegradación Ambiental , Biomasa , Nutrientes , Pteris/metabolismo , Suelo , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...