Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ther ; 31(10): 2962-2974, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37644722

RESUMEN

A deficiency of human arylsulfatase A (hASA) causes metachromatic leukodystrophy (MLD), a lysosomal storage disease characterized by sulfatide accumulation and central nervous system (CNS) demyelination. Efficacy of enzyme replacement therapy (ERT) is increased by genetic engineering of hASA to elevate its activity and transfer across the blood-brain barrier (BBB), respectively. To further improve the enzyme's bioavailability in the CNS, we mutated a cathepsin cleavage hot spot and obtained hASAs with substantially increased half-lives. We then combined the superstabilizing exchange E424A with the activity-promoting triple substitution M202V/T286L/R291N and the ApoEII-tag for BBB transfer in a trimodal modified neoenzyme called SuPerTurbo-ASA. Compared with wild-type hASA, half-life, activity, and M6P-independent uptake were increased more than 7-fold, about 3-fold, and more than 100-fold, respectively. ERT of an MLD-mouse model with immune tolerance to wild-type hASA did not induce antibody formation, indicating absence of novel epitopes. Compared with wild-type hASA, SuPerTurbo-ASA was 8- and 12-fold more efficient in diminishing sulfatide storage of brain and spinal cord. In both tissues, storage was reduced by ∼60%, roughly doubling clearance achieved with a 65-fold higher cumulative dose of wild-type hASA previously. Due to its enhanced therapeutic potential, SuPerTurbo-ASA might be a decisive advancement for ERT and gene therapy of MLD.


Asunto(s)
Leucodistrofia Metacromática , Enfermedades por Almacenamiento Lisosomal , Ratones , Animales , Humanos , Leucodistrofia Metacromática/terapia , Leucodistrofia Metacromática/tratamiento farmacológico , Cerebrósido Sulfatasa/genética , Cerebrósido Sulfatasa/metabolismo , Sulfoglicoesfingolípidos/uso terapéutico , Encéfalo/metabolismo , Enfermedades por Almacenamiento Lisosomal/genética , Enfermedades por Almacenamiento Lisosomal/terapia
2.
Ann Clin Transl Neurol ; 10(7): 1146-1159, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37212343

RESUMEN

OBJECTIVE: Metachromatic leukodystrophy is a lysosomal storage disease caused by deficient arylsulfatase A. It is characterized by progressive demyelination and thus mainly affects the white matter. Hematopoietic stem cell transplantation may stabilize and improve white matter damage, yet some patients deteriorate despite successfully treated leukodystrophy. We hypothesized that post-treatment decline in metachromatic leukodystrophy might be caused by gray matter pathology. METHODS: Three metachromatic leukodystrophy patients treated with hematopoietic stem cell transplantation with a progressive clinical course despite stable white matter pathology were clinically and radiologically analyzed. Longitudinal volumetric MRI was used to quantify atrophy. We also examined histopathology in three other patients deceased after treatment and compared them with six untreated patients. RESULTS: The three clinically progressive patients developed cognitive and motor deterioration after transplantation, despite stable mild white matter abnormalities on MRI. Volumetric MRI identified cerebral and thalamus atrophy in these patients, and cerebellar atrophy in two. Histopathology showed that in brain tissue of transplanted patients, arylsulfatase A expressing macrophages were clearly present in the white matter, but absent in the cortex. Arylsulfatase A expression within patient thalamic neurons was lower than in controls, the same was found in transplanted patients. INTERPRETATION: Neurological deterioration may occur after hematopoietic stem cell transplantation in metachromatic leukodystrophy despite successfully treated leukodystrophy. MRI shows gray matter atrophy, and histological data demonstrate absence of donor cells in gray matter structures. These findings point to a clinically relevant gray matter component of metachromatic leukodystrophy, which does not seem sufficiently affected by transplantation.


Asunto(s)
Enfermedades Desmielinizantes , Trasplante de Células Madre Hematopoyéticas , Leucodistrofia Metacromática , Enfermedades Neurodegenerativas , Humanos , Leucodistrofia Metacromática/terapia , Cerebrósido Sulfatasa , Enfermedades Neurodegenerativas/patología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Enfermedades Desmielinizantes/patología
3.
J Biol Chem ; 297(3): 101064, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34375644

RESUMEN

An inherited deficiency of arylsulfatase A (ASA) causes the lysosomal storage disease metachromatic leukodystrophy (MLD) characterized by massive intralysosomal storage of the acidic glycosphingolipid sulfatide and progressive demyelination. Lyso-sulfatide, which differs from sulfatide by the lack of the N-linked fatty acid, also accumulates in MLD and is considered a key driver of pathology although its concentrations are far below sulfatide levels. However, the metabolic origin of lyso-sulfatide is unknown. We show here that ASA-deficient murine macrophages and microglial cells express an endo-N-deacylase that cleaves the N-linked fatty acid from sulfatide. An ASA-deficient astrocytoma cell line devoid of this activity was used to identify the enzyme by overexpressing 13 deacylases with potentially matching substrate specificities. Hydrolysis of sulfatide was detected only in cells overexpressing the enzyme fatty acid amide hydrolase (FAAH). A cell-free assay with recombinant FAAH confirmed the novel role of this enzyme in sulfatide hydrolysis. Consistent with the in vitro data, deletion of FAAH lowered lyso-sulfatide levels in a mouse model of MLD. Regardless of the established cytotoxicity of lyso-sulfatide and the anti-inflammatory effects of FAAH inhibition seen in mouse models of several neurological diseases, genetic inactivation of FAAH did not mitigate, but rather exacerbated the disease phenotype of MLD mice. This unexpected finding was reflected by worsening of rotarod performance, increase of anxiety-related exploratory activity, aggravation of peripheral neuropathy, and reduced life expectancy. Thus, we conclude that FAAH has a protective function in MLD and may represent a novel therapeutic target for treatment of this fatal condition.


Asunto(s)
Amidohidrolasas/metabolismo , Leucodistrofia Metacromática/patología , Psicosina/análogos & derivados , Amidohidrolasas/genética , Amidohidrolasas/fisiología , Animales , Línea Celular , Cerebrósido Sulfatasa/deficiencia , Cerebrósido Sulfatasa/genética , Modelos Animales de Enfermedad , Femenino , Leucodistrofia Metacromática/enzimología , Leucodistrofia Metacromática/genética , Enfermedades por Almacenamiento Lisosomal/genética , Enfermedades por Almacenamiento Lisosomal/fisiopatología , Ratones , Ratones Noqueados , Microglía/metabolismo , Cultivo Primario de Células , Psicosina/genética , Psicosina/metabolismo , Sulfoglicoesfingolípidos/metabolismo
4.
Hum Mol Genet ; 29(23): 3807-3817, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33367737

RESUMEN

Enzyme replacement therapies, allogeneic bone marrow transplantation and gene therapies are treatment options for lysosomal storage diseases caused by inherited deficiencies of soluble lysosomal enzymes. Independent from the approach, the enzyme must be delivered to lysosomes of deficient patient cells. Little is known about the dissemination of enzyme within a tissue where cells compete for uptake via different receptor systems, binding affinities and endocytic rates. To evaluate dissemination and lysosomal targeting of a lysosomal enzyme in the CNS, we analysed receptor-mediated endocytosis of arylsulfatase A (ASA) by different types of brain-derived cell lines and primary murine brain cells. For ASA expressed by chinese hamster ovary cells for enzyme replacement therapy of metachromatic leukodystrophy, endocytic rates decline from microglia to neurons and astrocytes and to oligodendrocytes. Only immature oligodendrocytes endocytose significant amounts of enzyme. Uptake by non-microglial cells is due to mannose 6-phosphate receptors, whereas several receptor systems participate in endocytosis by microglial cells. Interestingly, ASA expressed by microglial cells cannot be taken up in a mannose 6-phosphate dependent manner. The resulting failure to correct non-microglial cells corroborates in vivo data and indicates that therapeutic effects of allogeneic bone marrow transplantation and hematopoietic stem cell gene therapy on metachromatic leukodystrophy are independent of metabolic cross-correction of neurons, astrocytes and oligodendrocytes by receptor-mediated endocytosis.


Asunto(s)
Astrocitos/metabolismo , Encéfalo/metabolismo , Cerebrósido Sulfatasa/metabolismo , Endocitosis , Leucodistrofia Metacromática/terapia , Microglía/metabolismo , Oligodendroglía/metabolismo , Animales , Astrocitos/patología , Encéfalo/patología , Cerebrósido Sulfatasa/genética , Terapia de Reemplazo Enzimático/métodos , Humanos , Leucodistrofia Metacromática/enzimología , Leucodistrofia Metacromática/patología , Ratones , Microglía/patología , Oligodendroglía/patología
5.
Ann Clin Transl Neurol ; 7(2): 169-180, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31967741

RESUMEN

OBJECTIVE: In metachromatic leukodystrophy, a lysosomal storage disorder due to decreased arylsulfatase A activity, hematopoietic stem cell transplantation may stop brain demyelination and allow remyelination, thereby halting white matter degeneration. This is the first study to define the effects and therapeutic mechanisms of hematopoietic stem cell transplantation on brain tissue of transplanted metachromatic leukodystrophy patients. METHODS: Autopsy brain tissue was obtained from eight (two transplanted and six nontransplanted) metachromatic leukodystrophy patients, and two age-matched controls. We examined the presence of donor cells by immunohistochemistry and microscopy. In addition, we assessed myelin content, oligodendrocyte numbers, and macrophage phenotypes. An unpaired t-test, linear regression or the nonparametric Mann-Whitney U-test was performed to evaluate differences between the transplanted, nontransplanted, and control group. RESULTS: In brain tissue of transplanted patients, we found metabolically competent donor macrophages expressing arylsulfatase A distributed throughout the entire white matter. Compared to nontransplanted patients, these macrophages preferentially expressed markers of alternatively activated, anti-inflammatory cells that may support oligodendrocyte survival and differentiation. Additionally, transplanted patients showed higher numbers of oligodendrocytes and evidence for remyelination. Contrary to the current hypothesis on therapeutic mechanism of hematopoietic cell transplantation in metachromatic leukodystrophy, we detected no enzymatic cross-correction to resident astrocytes and oligodendrocytes. INTERPRETATION: In conclusion, donor macrophages are able to digest accumulated sulfatides and may play a neuroprotective role for resident oligodendrocytes, thereby enabling remyelination, albeit without evidence of cross-correction of oligo- and astroglia. These results emphasize the importance of immunomodulation in addition to the metabolic correction, which might be exploited for improved outcomes.


Asunto(s)
Encéfalo , Trasplante de Células Madre Hematopoyéticas , Leucodistrofia Metacromática/terapia , Macrófagos , Oligodendroglía , Remielinización/fisiología , Adulto , Autopsia , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/patología , Niño , Preescolar , Femenino , Humanos , Masculino , Remielinización/inmunología , Adulto Joven
6.
Hum Mol Genet ; 28(11): 1810-1821, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30657900

RESUMEN

Protein engineering is a means to optimize protein therapeutics developed for the treatment of so far incurable diseases including cancers and genetic disorders. Here we report on an engineering approach in which we successfully increased the catalytic rate constant of an enzyme that is presently evaluated in enzyme replacement therapies (ERT) of a lysosomal storage disease (LSD). Although ERT is a treatment option for many LSDs, outcomes are lagging far behind expectations for most of them. This has been ascribed to insufficient enzyme activities accumulating in tissues difficult to target such as brain and peripheral nerves. We show for human arylsulfatase A (hARSA) that the activity of a therapeutic enzyme can be substantially increased by reversing activity-diminishing and by inserting activity-promoting amino acid substitutions that had occurred in the evolution of hominids and non-human mammals, respectively. The potential of this approach, here designated as evolutionary redesign, was highlighted by the observation that murinization of only 1 or 3 amino acid positions increased the hARSA activity 3- and 5-fold, with little impact on stability, respectively. The two kinetically optimized hARSA variants showed no immunogenic potential in ERT of a humanized ARSA knockout mouse model of metachromatic leukodystrophy (MLD) and reduced lysosomal storage of kidney, peripheral and central nervous system up to 3-fold more efficiently than wild-type hARSA. Due to their safety profile and higher therapeutic potential the engineered hARSA variants might represent major advances for future enzyme-based therapies of MLD and stimulate analogous approaches for other enzyme therapeutics.


Asunto(s)
Cerebrósido Sulfatasa/genética , Terapia de Reemplazo Enzimático/métodos , Terapia Genética , Leucodistrofia Metacromática/terapia , Enfermedades por Almacenamiento Lisosomal/terapia , Animales , Encéfalo/metabolismo , Encéfalo/patología , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Cerebrósido Sulfatasa/uso terapéutico , Modelos Animales de Enfermedad , Vectores Genéticos , Humanos , Riñón/metabolismo , Riñón/patología , Cinética , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/patología , Enfermedades por Almacenamiento Lisosomal/genética , Enfermedades por Almacenamiento Lisosomal/patología , Lisosomas/enzimología , Lisosomas/genética , Ratones , Ratones Noqueados , Nervios Periféricos/metabolismo , Nervios Periféricos/patología , Ingeniería de Proteínas
7.
J Control Release ; 253: 1-10, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28215668

RESUMEN

The lysosomal storage disorder (LSD) metachromatic leukodystrophy (MLD) is caused by a deficiency of the soluble, lysosomal hydrolase arylsulfatase A (ASA). The disease is characterized by accumulation of 3-O-sulfogalactosylceramide (sulfatide), progressive demyelination of the nervous system and premature death. Enzyme replacement therapy (ERT), based on regular intravenous injections of recombinant functional enzyme, is in clinical use for several LSDs. For MLD and other LSDs with central nervous system (CNS) involvement, however, ERT is limited by the blood-brain barrier (BBB) restricting transport of therapeutic enzymes from the blood to the brain. In the present study, the potential of different types of surfactant-coated biodegradable nanoparticles to increase brain delivery of ASA was evaluated. Three different strategies to bind ASA to nanoparticle surfaces were compared: (1) adsorption, (2) high-affinity binding via the streptavidin-biotin system, and (3) covalent binding. Adsorption allowed binding of high amounts of active ASA. However, in presence of phosphate-buffered saline or serum rapid and complete desorption occurred, rendering this strategy ineffective for in vivo applications. In contrast, stable immobilization with negligible dissociation was achieved by high-affinity and covalent binding. Consequently, we analyzed the brain targeting of two stably nanoparticle-bound ASA formulations in ASA-/- mice, an animal model of MLD. Compared to free ASA, injected as a control, the biodistribution of nanoparticle-bound ASA was altered in peripheral organs, but no increase of brain levels was detectable. The failure to improve brain delivery suggests that the ASA glycoprotein interferes with processes required to target surfactant-coated nanoparticles to brain capillary endothelial cells.


Asunto(s)
Encéfalo/metabolismo , Cerebrósido Sulfatasa/administración & dosificación , Nanopartículas/administración & dosificación , Tensoactivos/administración & dosificación , Animales , Avidina/química , Biotinilación , Cerebrósido Sulfatasa/química , Cerebrósido Sulfatasa/genética , Cerebrósido Sulfatasa/farmacocinética , Femenino , Ácido Láctico/química , Leucodistrofia Metacromática/tratamiento farmacológico , Leucodistrofia Metacromática/metabolismo , Ratones Noqueados , Nanopartículas/química , Poloxámero/administración & dosificación , Poloxámero/química , Poloxámero/farmacocinética , Poliésteres/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Polisorbatos/administración & dosificación , Polisorbatos/química , Polisorbatos/farmacocinética , Albúmina Sérica Humana/química , Tensoactivos/química , Tensoactivos/farmacocinética
8.
Mol Ther ; 23(9): 1519-31, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26061647

RESUMEN

Metachromatic leukodystrophy (MLD) is an inherited lysosomal storage disorder resulting from a functional deficiency of arylsulfatase A (ARSA), an enzyme that catalyzes desulfation of 3-O-sulfogalactosylceramide (sulfatide). Lack of active ARSA leads to the accumulation of sulfatide in oligodendrocytes, Schwann cells and some neurons and triggers progressive demyelination, the neuropathological hallmark of MLD. Several therapeutic approaches have been explored, including enzyme replacement, autologous hematopoietic stem cell-based gene therapy, intracerebral gene therapy or cell-based gene delivery into the central nervous system (CNS). However, long-term treatment of the blood-brain-barrier protected CNS remains challenging. Here we used MLD patient-derived induced pluripotent stem cells (iPSCs) to generate long-term self-renewing neuroepithelial stem cells and astroglial progenitors for cell-based ARSA replacement. Following transplantation of ARSA-overexpressing precursors into ARSA-deficient mice we observed a significant reduction of sulfatide storage up to a distance of 300 µm from grafted cells. Our data indicate that neural precursors generated via reprogramming from MLD patients can be engineered to ameliorate sulfatide accumulation and may thus serve as autologous cell-based vehicle for continuous ARSA supply in MLD-affected brain tissue.


Asunto(s)
Sistema Nervioso Central/metabolismo , Cerebrósido Sulfatasa/genética , Expresión Génica , Células Madre Pluripotentes Inducidas/metabolismo , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/metabolismo , Sulfoglicoesfingolípidos/metabolismo , Animales , Axones/metabolismo , Encéfalo/metabolismo , Diferenciación Celular , Supervivencia Celular/genética , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Cerebrósido Sulfatasa/metabolismo , Proteínas de Unión al ADN/deficiencia , Modelos Animales de Enfermedad , Orden Génico , Terapia Genética/métodos , Vectores Genéticos/genética , Humanos , Células Madre Pluripotentes Inducidas/citología , Lentivirus/genética , Ratones , Ratones Noqueados , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/citología , Neuronas/metabolismo , Transducción Genética
9.
Exp Neurol ; 271: 36-45, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25956830

RESUMEN

An inherited deficiency of ß-galactosylceramidase (GALC) causes the lysosomal storage disease globoid cell leukodystrophy (GLD). The disease is characterized by the accumulation of the cytotoxic metabolite psychosine (galactosylsphingosine), causing rapid degeneration of myelinating cells. Most patients suffer from the infantile form of GLD with onset of disease between 3 and 6 months after birth and death by 2 years of age. The most widely used animal model of GLD, the twitcher mouse, presents with an even more rapid course of disease and death around 40 days of age. We have generated a novel "humanized" mouse model of GLD by inserting a human GALC cDNA containing an adult-onset patient mutation into the murine GALC gene. Humanized GALC mice exhibit pathological hallmarks of GLD including psychosine accumulation, neuroinflammation, CNS infiltration of macrophages, astrogliosis and demyelination. Residual GALC activities in mouse tissues are low and the mice display a median lifespan of 46 days. Due to the expression of the human transgene, the mice do not develop an immune response against rhGALC, rendering the animal model suitable for therapies based on human enzyme. Intravenously injected rhGALC was able to surmount the blood-brain barrier and was targeted to lysosomes of brain macrophages, astrocytes and neurons. High-dose enzyme replacement therapy started at postnatal day 21 reduced the elevated psychosine levels in the peripheral and central nervous system by 14-16%, but did not ameliorate neuroinflammation, demyelination and lifespan. These results may indicate that treatment must be started earlier before pathology occurs.


Asunto(s)
Modelos Animales de Enfermedad , Terapia de Reemplazo Enzimático/métodos , Galactosilceramidasa/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Leucodistrofia de Células Globoides/enzimología , Leucodistrofia de Células Globoides/terapia , Factores de Edad , Animales , Animales Recién Nacidos , Peso Corporal/genética , Sistema Nervioso Central/enzimología , Citocinas/metabolismo , Femenino , Galactosilceramidasa/genética , Regulación de la Expresión Génica/genética , Humanos , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Mutación/genética , Vaina de Mielina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Psicosina/metabolismo
10.
Mol Ther ; 23(7): 1160-1168, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25896249

RESUMEN

Metachromatic leukodystrophy (MLD) is a lysosomal storage disease caused by a functional deficiency of the lysosomal enzyme arylsulfatase A. The prevailing late-infantile variant of MLD is characterized by widespread and progressive demyelination of the central nervous system (CNS) causing death during childhood. In order to gain insight into the pathomechanism of the disease and to identify novel therapeutic targets, we analyzed neuroinflammation in two mouse models reproducing a mild, nondemyelinating, and a more severe, demyelinating, variant of MLD, respectively. Microgliosis and upregulation of cytokine/chemokine levels were clearly more pronounced in the demyelinating model. The analysis of the temporal cytokine/chemokine profiles revealed that the onset of demyelination is preceded by a sustained elevation of the macrophage inflammatory protein (MIP)-1α followed by an upregulation of MIP-1ß, monocyte chemotactic protein (MCP)-1, and several interleukins. The tumor necrosis factor (TNF)-α remains unchanged. Treatment of the demyelinating mouse model with the nonsteroidal anti-inflammatory drug simvastatin reduced neuroinflammation, improved the swimming performance and ataxic gait, and retarded demyelination of the spinal cord. Our data suggest that neuroinflammation is causative for demyelination in MLD mice and that anti-inflammatory treatment might be a novel therapeutic option to improve the CNS function of MLD patients.


Asunto(s)
Sistema Nervioso Central/efectos de los fármacos , Inflamación/tratamiento farmacológico , Leucodistrofia Metacromática/tratamiento farmacológico , Simvastatina/administración & dosificación , Animales , Antiinflamatorios/administración & dosificación , Sistema Nervioso Central/fisiopatología , Quimiocina CCL2/biosíntesis , Quimiocina CCL4/biosíntesis , Enfermedades Desmielinizantes/tratamiento farmacológico , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Humanos , Inflamación/fisiopatología , Leucodistrofia Metacromática/inmunología , Ratones , Médula Espinal/efectos de los fármacos , Médula Espinal/patología , Factor de Necrosis Tumoral alfa/biosíntesis
11.
J Neurosci ; 34(9): 3122-9, 2014 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-24573272

RESUMEN

Enzyme replacement therapy (ERT) is a treatment option for lysosomal storage disorders (LSDs) caused by deficiencies of soluble lysosomal enzymes. ERT depends on receptor-mediated transport of intravenously injected recombinant enzyme to lysosomes of patient cells. The blood-brain barrier (BBB) prevents efficient transfer of therapeutic polypeptides from the blood to the brain parenchyma and thus hinders effective treatment of LSDs with CNS involvement. We compared the potential of five brain-targeting peptides to promote brain delivery of the lysosomal enzyme arylsulfatase A (ASA). Fusion proteins between ASA and the protein transduction domain of the human immunodeficiency virus TAT protein (Tat), an Angiopep peptide (Ang-2), and the receptor-binding domains of human apolipoprotein B (ApoB) and ApoE (two versions, ApoE-I and ApoE-II) were generated. All ASA fusion proteins were enzymatically active and targeted to lysosomes when added to cultured cells. In contrast to wild-type ASA, which is taken up by mannose-6-phosphate receptors, all chimeric proteins were additionally endocytosed via mannose-6-phosphate-independent routes. For ASA-Ang-2, ASA-ApoE-I, and ASA-ApoE-II, uptake was partially due to the low-density lipoprotein receptor-related protein 1. Transendothelial transfer in a BBB cell culture model was elevated for ASA-ApoB, ASA-ApoE-I, and ASA-ApoE-II. Brain delivery was, however, increased only for ASA-ApoE-II. ApoE-II was also superior to wild-type ASA in reducing lysosomal storage in the CNS of ASA-knock-out mice treated by ERT. Therefore, the ApoE-derived peptide appears useful to treat metachromatic leukodystrophy and possibly other neurological disorders more efficiently.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Cerebrósido Sulfatasa/administración & dosificación , Vectores Genéticos/fisiología , Péptidos/metabolismo , Animales , Apolipoproteínas E/genética , Barrera Hematoencefálica/efectos de los fármacos , Encéfalo/citología , Células Cultivadas , Cerebrósido Sulfatasa/deficiencia , Cerebrósido Sulfatasa/genética , Cricetulus , Medios de Cultivo Condicionados/farmacología , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Femenino , Humanos , Leucodistrofia Metacromática/tratamiento farmacológico , Leucodistrofia Metacromática/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptor IGF Tipo 2/genética , Receptor IGF Tipo 2/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
12.
Biochim Biophys Acta ; 1822(7): 1137-46, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22465033

RESUMEN

Most lysosomal storage diseases are caused by defects in genes encoding for acidic hydrolases. Deficiency of an enzyme involved in the catabolic pathway of N-linked glycans leads to the accumulation of the respective substrate and consequently to the onset of a specific storage disorder. Di-N-acetylchitobiase and core specific α1-6mannosidase represent the only exception. In fact, to date no lysosomal disease has been correlated to the deficiency of these enzymes. We generated di-N-acetylchitobiase-deficient mice by gene targeting of the Ctbs gene in murine embryonic stem cells. Accumulation of Man2GlcNAc2 and Man3GlcNAc2 was evaluated in all analyzed tissues and the tetrasaccharide was detected in urines. Multilamellar inclusion bodies reminiscent of polar lipids were present in epithelia of a scattered subset of proximal tubules in the kidney. Less constantly, enlarged Kupffer cells were observed in liver, filled with phagocytic material resembling partly digested red blood cells. These findings confirm an important role for lysosomal di-N-acetylchitobiase in glycans degradation and suggest that its deficiency could be the cause of a not yet described lysosomal storage disease.


Asunto(s)
Acetilglucosaminidasa/metabolismo , Disacáridos/metabolismo , Enfermedades por Almacenamiento Lisosomal/enzimología , alfa-Manosidasa/metabolismo , Acetilglucosaminidasa/análisis , Acetilglucosaminidasa/deficiencia , Acetilglucosaminidasa/genética , Animales , Disacáridos/análisis , Células Madre Embrionarias , Marcación de Gen , Túbulos Renales Proximales/enzimología , Macrófagos del Hígado/enzimología , Hígado/enzimología , Lisosomas/enzimología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oligosacáridos/metabolismo , Oligosacáridos/orina , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Distribución Tisular , alfa-Manosidasa/análisis , beta-Glucosidasa/análisis
13.
Hum Mol Genet ; 21(11): 2599-609, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22388935

RESUMEN

Metachromatic leukodystrophy (MLD) is a lysosomal storage disease caused by a functional deficiency of arylsulfatase A (ASA). Previous studies in ASA-knockout mice suggested enzyme replacement therapy (ERT) to be a promising treatment option. The mild phenotype of ASA-knockout mice did, however, not allow to examine therapeutic responses of the severe neurological symptoms that dominate MLD. We, therefore, generated an aggravated MLD mouse model displaying progressive demyelination and reduced nerve conduction velocity (NCV) and treated it by weekly intravenous injections of 20 mg/kg recombinant human ASA for 16 weeks. To analyze the stage-dependent therapeutic effects, ERT was initiated in a presymptomatic, early and progressed disease stage, at age 4, 8 and 12 months, respectively. Brain sulfatide storage, NCV and behavioral alterations were improved only in early, but not in late, treated mice showing a clear age-dependent efficacy of treatment. Hematopoietic stem cell transplantation (HSCT) for late-onset variants is the only therapeutic option for MLD to date. ERT resembles a part of the HSCT rationale, which is based on ASA supply by donor cells. Beyond ERT, our results, therefore, corroborate the clinical observation that HSCT is only effective when performed in early stages of disease.


Asunto(s)
Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/terapia , Animales , Células CHO , Cerebrósido Sulfatasa/genética , Cerebrósido Sulfatasa/metabolismo , Cricetinae , Modelos Animales de Enfermedad , Terapia de Reemplazo Enzimático , Terapia Genética , Ratones , Ratones Noqueados , Transfección , Resultado del Tratamiento
14.
J Biol Chem ; 286(20): 17487-94, 2011 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-21454621

RESUMEN

Enzyme replacement therapy is an option to treat lysosomal storage diseases caused by functional deficiencies of lysosomal hydrolases as intravenous injection of therapeutic enzymes can correct the catabolic defect within many organ systems. However, beneficial effects on central nervous system manifestations are very limited because the blood-brain barrier (BBB) prevents the transfer of enzyme from the circulation to the brain parenchyma. Preclinical studies in mouse models of metachromatic leukodystrophy, however, showed that arylsulfatase A (ASA) is able to cross the BBB to some extent, thus reducing lysosomal storage in brain microglial cells. The present study aims to investigate the routing of ASA across the BBB and to improve the transfer in vitro using a well established cell culture model consisting of primary porcine brain capillary endothelial cells cultured on Transwell filter inserts. Passive apical-to-basolateral ASA transfer was observed, which was not saturable up to high ASA concentrations. No active transport could be determined. The passive transendothelial transfer was, however, charge-dependent as reduced concentrations of negatively charged monosaccharides in the N-glycans of ASA or the addition of polycations increased basolateral ASA levels. Adsorptive transcytosis is therefore considered to be the major transport pathway. Partial inhibition of the transcellular ASA transfer by mannose 6-phosphate indicated a second route depending on the insulin-like growth factor II/mannose 6-phosphate receptor, MPR300. We conclude that cationization of ASA and an increase of the mannose 6-phosphate content of the enzyme may promote blood-to-brain transfer of ASA, thus leading to an improved therapeutic efficacy of enzyme replacement therapy behind the BBB.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Cerebrósido Sulfatasa/metabolismo , Células Endoteliales/metabolismo , Manosafosfatos/metabolismo , Animales , Barrera Hematoencefálica/patología , Cationes/metabolismo , Cerebrósido Sulfatasa/uso terapéutico , Modelos Animales de Enfermedad , Células Endoteliales/patología , Terapia de Reemplazo Enzimático/métodos , Humanos , Leucodistrofia Metacromática/tratamiento farmacológico , Leucodistrofia Metacromática/enzimología , Ratones , Transporte de Proteínas/efectos de los fármacos , Porcinos
15.
Hum Mol Genet ; 20(14): 2760-9, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21515587

RESUMEN

Arylsulfatase A (ASA) catalyzes the desulfation of sulfatide, a major lipid component of myelin. Inherited functional deficiencies of ASA cause the lysosomal storage disease (LSD) metachromatic leukodystrophy (MLD), which is characterized by intralysosomal accumulation of sulfatide, progressive neurological symptoms and early death. Enzyme replacement therapy (ERT) using intravenous injection of active enzyme is a treatment option for many LSDs as exogenous lysosomal enzymes are delivered to lysosomes of patient's cells via receptor-mediated endocytosis. Efficient treatment of MLD and other LSDs with central nervous system (CNS) involvement is, however, hampered by the blood-brain barrier (BBB), which limits transfer of therapeutic enzymes from the circulation to the brain parenchyma. To bypass the BBB, we infused recombinant human ASA (rhASA) by implanted miniature pumps into the cerebrospinal fluid (CSF) of a conventional and a novel, genetically aggravated ASA knockout mouse model of MLD. rhASA continuously delivered to the lateral ventricle for 4 weeks penetrated the brain parenchyma and was targeted to the lysosomes of brain cells. Histological analysis revealed complete reversal of lysosomal storage in the infused hemisphere. rhASA concentrations and sulfatide clearance declined with increasing distance from the infusion site. Correction of the ataxic gait indicated reversal of central nervous system dysfunctions. The profound histopathological and functional improvements, the requirement of low enzyme doses and the absence of immunological side effects suggest intracerebroventricular ERT to be a promising treatment option for MLD and other LSDs with prevailing CNS disease.


Asunto(s)
Cerebrósido Sulfatasa/uso terapéutico , Terapia de Reemplazo Enzimático/métodos , Infusiones Intraventriculares , Leucodistrofia Metacromática/tratamiento farmacológico , Proteínas Recombinantes/uso terapéutico , Recuperación de la Función/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Humanos , Leucodistrofia Metacromática/enzimología , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/patología , Ratones , Ratones Noqueados , Factores de Tiempo
16.
Glycobiology ; 20(2): 248-59, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19864504

RESUMEN

Metachromatic leukodystrophy (MLD) is a lysosomal storage disease caused by a deficiency of the lysosomal enzyme arylsulfatase A (ASA). Enzyme replacement therapy (ERT) is a therapeutic option for MLD and other lysosomal disorders. This therapy depends on N-linked oligosaccharide-mediated delivery of intravenously injected recombinant enzyme to the lysosomes of patient cells. Because of the importance of N-linked oligosaccharide side chains in ERT, we examined the composition of the three N-linked glycans of four different recombinant ASAs in a site-specific manner. Depending on the culture conditions and the cell line expressing the enzyme, we detected a high variability of the high-mannose-type N-glycans which prevail at all glycosylation sites. Our data show that the composition of the glycans is largely determined by substantial trimming in the medium. The susceptibility for trimming is different for the glycans at the three N-glycosylation sites. Interestingly, which of the glycans is most susceptible to trimming also depends on production conditions. CHO cells cultured under bioreactor conditions yielded recombinant ASA with the most preserved N-glycan structures, the highest mannose-6-phosphate content and the highest similarity to non-recombinant enzyme. Notably, roughly one-third of the N-glycans released from the three glycosylation sites were fucosylated. In the last years, numerous recombinant lysosomal enzymes were used for preclinical ERT trials. Our data show that the oligosaccharide structures were very different in these trials making it difficult to draw common conclusions from the various investigations.


Asunto(s)
Cerebrósido Sulfatasa/biosíntesis , Cerebrósido Sulfatasa/metabolismo , Lisosomas/enzimología , Oligosacáridos/análisis , Oligosacáridos/química , Animales , Células CHO , Células Cultivadas , Cerebrósido Sulfatasa/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Cricetinae , Cricetulus , Humanos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
17.
J Biol Chem ; 284(14): 9372-81, 2009 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-19224915

RESUMEN

Arylsulfatase A (ASA) catalyzes the intralysosomal desulfation of 3-O-sulfogalactosylceramide (sulfatide) to galactosylceramide. The reaction requires saposin B (Sap B), a non-enzymatic proteinaceous cofactor which presents sulfatide to the catalytic site of ASA. The lack of either ASA or Sap B results in a block of sulfatide degradation, progressive intralysosomal accumulation of sulfatide, and the fatal lysosomal storage disease metachromatic leukodystrophy. We studied the coupled Sap B-ASA reaction in vitro using detergent-free micellar and liposomal assay systems and in vivo using cell culture models of metachromatic leukodystrophy. Under in vitro conditions, the reaction had a narrow pH optimum around pH 4.3 and was inhibited by mono- and divalent cations, phosphate and sulfite. Bis(monoacylglycero) phosphate and phosphatidic acid were activators of the reaction, underscoring a significant role of acidic phosphoglycerolipids in sphingolipid degradation. Desulfation was negligible when Sap B was substituted by Sap A, C, or D. Up to a molar ratio between Sap B and sulfatide of 1:5, an elevation of Sap B concentrations caused a sharp increase of sulfatide hydrolysis, indicating the requirement of unexpected high Sap B levels for maximum turnover. Feeding of ASA-deficient, sulfatide-storing primary mouse kidney cells with ASA caused partial clearance of sulfatide. Co-feeding of Sap B or its precursor prosaposin resulted in the lysosomal uptake of the cofactor but did not promote ASA-catalyzed sulfatide hydrolysis. This suggests that Sap B is not a limiting factor of the coupled Sap B-ASA reaction in mouse kidney cells even if sulfatide has accumulated to unphysiologically high levels.


Asunto(s)
Cerebrósido Sulfatasa/metabolismo , Leucodistrofia Metacromática/enzimología , Modelos Biológicos , Saposinas/metabolismo , Animales , Células Cultivadas , Cerebrósido Sulfatasa/deficiencia , Cerebrósido Sulfatasa/genética , Disulfuros/metabolismo , Activación Enzimática , Humanos , Hidrólisis , Leucodistrofia Metacromática/genética , Metabolismo de los Lípidos , Liposomas , Ratones , Ratones Noqueados , Especificidad por Sustrato , Porcinos
18.
Mol Ther ; 17(4): 600-6, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19174759

RESUMEN

Inherited deficiencies of lysosomal hydrolases cause lysosomal storage diseases (LSDs) that are characterized by a progressive multisystemic pathology and premature death. Repeated intravenous injection of the active counterpart of the deficient enzyme, a treatment strategy called enzyme replacement therapy (ERT), evolved as a clinical option for several LSDs without central nervous system (CNS) involvement. To assess the efficacy of long-term ERT in metachromatic leukodystrophy (MLD), an LSD with prevailing nervous system disease, we treated immunotolerant arylsulfatase A (ASA) knockout mice with 52 doses of either 4 or 50 mg/kg recombinant human ASA (rhASA). ERT was tolerated without side effects and improved disease manifestations in a dose-dependent manner. Dosing of 4 mg/kg diminished sulfatide storage in kidney and peripheral nervous system (PNS) but not the CNS, whereas treatment with 50 mg/kg was also effective in the CNS in reducing storage in brain and spinal cord by 34 and 45%, respectively. Histological analyses revealed regional differences in sulfatide clearance. While 70% less storage profiles were detectable, for example, in the hippocampal fimbria, the histopathology of the brain stem was unchanged. Both enzyme doses normalized the ataxic gait of ASA knockout mice, demonstrating prevention of nervous system dysfunctions that dominate early stages of MLD.


Asunto(s)
Ataxia/terapia , Sistema Nervioso Central/patología , Cerebrósido Sulfatasa/uso terapéutico , Modelos Animales de Enfermedad , Marcha , Leucodistrofia Metacromática/terapia , Animales , Ataxia/fisiopatología , Conducta Animal , Humanos , Ratones , Ratones Noqueados , Proteínas Recombinantes/uso terapéutico
19.
J Mol Med (Berl) ; 86(4): 433-42, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18360747

RESUMEN

Enzyme replacement therapy is a treatment option for several lysosomal storage disorders. We reported previously that treatment of a knockout mouse model of the sphingolipid storage disease metachromatic leukodystrophy (MLD) by intravenous injection of recombinant human arylsulfatase A (rhASA) reduces sulfatide storage and improves nervous system pathology and function. Here, we show that treated mice can develop anti-rhASA antibodies, which impede sulfatide clearance without inhibiting enzyme activity. The neutralizing effect of antibodies was reproduced in cell culture models of MLD by demonstrating that mouse immune serum reduces the ability of rhASA to clear sulfatide from cultured ASA-deficient Schwann and kidney cells. We show that reduced clearance is due to an antibody-mediated blockade of mannose 6-phosphate receptor-dependent enzyme uptake, retargeting of rhASA from sulfatide-storing cells to macrophages, intracellular misrouting of rhASA, and reduction of enzyme stability. Induction of immunotolerance to rhASA by transgenic expression of an active site mutant of human ASA restores sulfatide clearance in mice. The data indicate that the influence of non-inhibitory antibodies must be more intensively considered in evaluating the therapeutic efficacy of enzyme replacement in lysosomal storage disorders in general and in patients without cross-reacting material specifically.


Asunto(s)
Anticuerpos/metabolismo , Cerebrósido Sulfatasa/metabolismo , Leucodistrofia Metacromática/terapia , Enfermedades por Almacenamiento Lisosomal/terapia , Animales , Sitios de Unión , Células Cultivadas , Cerebrósido Sulfatasa/genética , Terapia Genética , Humanos , Riñón/citología , Leucodistrofia Metacromática/metabolismo , Enfermedades por Almacenamiento Lisosomal/metabolismo , Ratones , Ratones Noqueados , Receptor IGF Tipo 2/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sulfoglicoesfingolípidos/metabolismo
20.
Mol Med ; 13(9-10): 471-9, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17660863

RESUMEN

A deficiency of arylsulfatase A (ASA) causes metachromatic leukodystrophy (MLD), a lysosomal storage disorder characterized by accumulation of sulfatide, a severe neurological phenotype and early death. The efficacy of enzyme replacement therapy (ERT) has previously been determined in ASA knockout (ASA-/-) mice representing the only available animal model for MLD. Repeated intravenous injection of human ASA (hASA) improved the nervous system pathology and function, but also elicited a progressive humoral immune response leading to treatment resistance, anaphylactic reactions, and high mortality. In contrast to ASA-/- mice, most MLD patients express mutant hASA which may entail immunological tolerance to substituted wildtype hASA and thus protect from immunological complications. To test this notion, a cysteine-to-serine substitution was introduced into the active site of the hASA and the resulting inactive hASA-C69S variant was constitutively expressed in ASA-/- mice. Mice with sub-to supranormal levels of mutant hASA expression were analyzed. All mice, including those showing transgene expression below the limit of detection, were immunologically unresponsive to injected hASA. More than 100-fold overexpression did not induce an overt new phenotype except occasional intralysosomal deposition of minor amounts of glycogen in hepatocytes. Furthermore, long-term, low-dose ERT reduced sulfatide storage in peripheral tissues and the central nervous system indicating that high levels of extracellular mutant hASA do not prevent cellular uptake and lysosomal targeting of substituted wildtype hASA. Due to the tolerance to hASA and maintenance of the MLD-like phenotype, the novel transgenic strain may be particularly advantageous to assess the benefit and risk of long-term ERT.


Asunto(s)
Cerebrósido Sulfatasa/uso terapéutico , Modelos Animales de Enfermedad , Tolerancia Inmunológica/genética , Leucodistrofia Metacromática/tratamiento farmacológico , Sustitución de Aminoácidos , Animales , Sitios de Unión , Células Cultivadas , Cerebrósido Sulfatasa/administración & dosificación , Cerebrósido Sulfatasa/genética , Cerebrósido Sulfatasa/metabolismo , Cerebrósido Sulfatasa/ultraestructura , Cricetinae , Esquema de Medicación , Ensayo de Inmunoadsorción Enzimática , Expresión Génica , Humanos , Inyecciones Intravenosas , Riñón/citología , Leucodistrofia Metacromática/etiología , Leucodistrofia Metacromática/metabolismo , Leucodistrofia Metacromática/patología , Hígado/efectos de los fármacos , Hígado/enzimología , Hígado/metabolismo , Hígado/patología , Hígado/ultraestructura , Ratones , Ratones Transgénicos , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/uso terapéutico , Serina/metabolismo , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...