Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Diagnostics (Basel) ; 12(6)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35741163

RESUMEN

Osteoarticular infections are major disabling diseases that can occur after orthopedic implant surgery in patients. The management of these infections is very complex and painful, requiring surgical intervention in combination with long-term antibiotic treatment. Therefore, early and accurate diagnosis of the causal pathogens is essential before formulating chemotherapeutic regimens. Although culture-based microbiology remains the most common diagnosis of osteoarticular infections, its regular failure to identify the causative pathogen as well as its long-term modus operandi motivates the development of rapid, accurate, and sufficiently comprehensive bacterial species-specific diagnostics that must be easy to use by routine clinical laboratories. Based on these criteria, we reported on the feasibility of our DendrisCHIP® technology using DendrisCHIP®OA as an innovative molecular diagnostic method to diagnose pathogen bacteria implicated in osteoarticular infections. This technology is based on the principle of microarrays in which the hybridization signals between oligoprobes and complementary labeled DNA fragments from isolates queries a database of hybridization signatures corresponding to a list of pre-established bacteria implicated in osteoarticular infections by a decision algorithm based on machine learning methods. In this way, this technology combines the advantages of a PCR-based method and next-generation sequencing (NGS) while reducing the limitations and constraints of the two latter technologies. On the one hand, DendrisCHIP®OA is more comprehensive than multiplex PCR tests as it is able to detect many more germs on a single sample. On the other hand, this method is not affected by the large number of nonclinically relevant bacteria or false positives that characterize NGS, as our DendrisCHIP®OA has been designed to date to target only a subset of 20 bacteria potentially responsible for osteoarticular infections. DendrisCHIP®OA has been compared with microbial culture on more than 300 isolates and a 40% discrepancy between the two methods was found, which could be due in part but not solely to the absence or poor identification of germs detected by microbial culture. We also demonstrated the reliability of our technology in correctly identifying bacteria in isolates by showing a convergence (i.e., same bacteria identified) with NGS superior to 55% while this convergence was only 32% between NGS and microbial culture data. Finally, we showed that our technology can provide a diagnostic result in less than one day (technically, 5 h), which is comparatively faster and less labor intensive than microbial cultures and NGS.

2.
Front Cell Dev Biol ; 9: 607628, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33585476

RESUMEN

Single-cell variability of growth is a biological phenomenon that has attracted growing interest in recent years. Important progress has been made in the knowledge of the origin of cell-to-cell heterogeneity of growth, especially in microbial cells. To better understand the origins of such heterogeneity at the single-cell level, we developed a new methodological pipeline that coupled cytometry-based cell sorting with automatized microscopy and image analysis to score the growth rate of thousands of single cells. This allowed investigating the influence of the initial amount of proteins of interest on the subsequent growth of the microcolony. As a preliminary step to validate this experimental setup, we referred to previous findings in yeast where the expression level of Tsl1, a member of the Trehalose Phosphate Synthase (TPS) complex, negatively correlated with cell division rate. We unfortunately could not find any influence of the initial TSL1 expression level on the growth rate of the microcolonies. We also analyzed the effect of the natural variations of trehalose-6-phosphate synthase (TPS1) expression on cell-to-cell growth heterogeneity, but we did not find any correlation. However, due to the already known altered growth of the tps1Δ mutants, we tested this strain at the single-cell level on a permissive carbon source. This mutant showed an outstanding lack of reproducibility of growth rate distributions as compared to the wild-type strain, with variable proportions of non-growing cells between cultivations and more heterogeneous microcolonies in terms of individual growth rates. Interestingly, this variable behavior at the single-cell level was reminiscent to the high variability that is also stochastically suffered at the population level when cultivating this tps1Δ strain, even when using controlled bioreactors.

3.
Brief Bioinform ; 19(3): 425-436, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28065917

RESUMEN

Although a large number of clustering algorithms have been proposed to identify groups of co-expressed genes from microarray data, the question of if and how such methods may be applied to RNA sequencing (RNA-seq) data remains unaddressed. In this work, we investigate the use of data transformations in conjunction with Gaussian mixture models for RNA-seq co-expression analyses, as well as a penalized model selection criterion to select both an appropriate transformation and number of clusters present in the data. This approach has the advantage of accounting for per-cluster correlation structures among samples, which can be strong in RNA-seq data. In addition, it provides a rigorous statistical framework for parameter estimation, an objective assessment of data transformations and number of clusters and the possibility of performing diagnostic checks on the quality and homogeneity of the identified clusters. We analyze four varied RNA-seq data sets to illustrate the use of transformations and model selection in conjunction with Gaussian mixture models. Finally, we propose a Bioconductor package coseq (co-expression of RNA-seq data) to facilitate implementation and visualization of the recommended RNA-seq co-expression analyses.


Asunto(s)
Biología Computacional/métodos , Drosophila melanogaster/metabolismo , Embrión de Mamíferos/metabolismo , Feto/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Neocórtex/metabolismo , Animales , Drosophila melanogaster/genética , Embrión de Mamíferos/citología , Femenino , Humanos , Intestino Delgado/metabolismo , Masculino , Ratones , Modelos Estadísticos , Porcinos
4.
Brief Bioinform ; 19(1): 65-76, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27742662

RESUMEN

Numerous statistical pipelines are now available for the differential analysis of gene expression measured with RNA-sequencing technology. Most of them are based on similar statistical frameworks after normalization, differing primarily in the choice of data distribution, mean and variance estimation strategy and data filtering. We propose an evaluation of the impact of these choices when few biological replicates are available through the use of synthetic data sets. This framework is based on real data sets and allows the exploration of various scenarios differing in the proportion of non-differentially expressed genes. Hence, it provides an evaluation of the key ingredients of the differential analysis, free of the biases associated with the simulation of data using parametric models. Our results show the relevance of a proper modeling of the mean by using linear or generalized linear modeling. Once the mean is properly modeled, the impact of the other parameters on the performance of the test is much less important. Finally, we propose to use the simple visualization of the raw P-value histogram as a practical evaluation criterion of the performance of differential analysis methods on real data sets.


Asunto(s)
Proteínas de Arabidopsis/genética , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN/genética , Análisis de Secuencia de ARN/métodos , Transcriptoma , Arabidopsis/genética , Simulación por Computador , Conjuntos de Datos como Asunto , Humanos , Modelos Estadísticos , Programas Informáticos
5.
Bioinformatics ; 31(9): 1420-7, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25563332

RESUMEN

MOTIVATION: In recent years, gene expression studies have increasingly made use of high-throughput sequencing technology. In turn, research concerning the appropriate statistical methods for the analysis of digital gene expression (DGE) has flourished, primarily in the context of normalization and differential analysis. RESULTS: In this work, we focus on the question of clustering DGE profiles as a means to discover groups of co-expressed genes. We propose a Poisson mixture model using a rigorous framework for parameter estimation as well as the choice of the appropriate number of clusters. We illustrate co-expression analyses using our approach on two real RNA-seq datasets. A set of simulation studies also compares the performance of the proposed model with that of several related approaches developed to cluster RNA-seq or serial analysis of gene expression data. AVAILABILITY AND AND IMPLEMENTATION: The proposed method is implemented in the open-source R package HTSCluster, available on CRAN. CONTACT: andrea.rau@jouy.inra.fr SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ARN/métodos , Animales , Línea Celular , Análisis por Conglomerados , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Humanos , Hígado/metabolismo , Modelos Estadísticos , Distribución de Poisson
6.
J Soc Fr Statistique (2009) ; 155(2): 57-71, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25279246

RESUMEN

We compare two major approaches to variable selection in clustering: model selection and regularization. Based on previous results, we select the method of Maugis et al. (2009b), which modified the method of Raftery and Dean (2006), as a current state of the art model selection method. We select the method of Witten and Tibshirani (2010) as a current state of the art regularization method. We compared the methods by simulation in terms of their accuracy in both classification and variable selection. In the first simulation experiment all the variables were conditionally independent given cluster membership. We found that variable selection (of either kind) yielded substantial gains in classification accuracy when the clusters were well separated, but few gains when the clusters were close together. We found that the two variable selection methods had comparable classification accuracy, but that the model selection approach had substantially better accuracy in selecting variables. In our second simulation experiment, there were correlations among the variables given the cluster memberships. We found that the model selection approach was substantially more accurate in terms of both classification and variable selection than the regularization approach, and that both gave more accurate classifications than K-means without variable selection. But the model selection approach is not available in a very high dimension context.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA