Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Heliyon ; 10(18): e38047, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39328571

RESUMEN

Environmental pollution poses a significant threat to human health, particularly concerning its impact on cardiovascular diseases (CVDs). This review synthesizes epidemiological and molecular evidence to elucidate the intricate relationship between environmental pollutants and CVDs. Epidemiological studies highlight the association between exposure to air, water, and soil pollutants and increased CVD risk, including hypertension, coronary artery disease, and stroke. Furthermore, molecular investigations unravel the underlying mechanisms linking pollutant exposure to CVD pathogenesis, such as oxidative stress, inflammation, endothelial dysfunction, and autonomic imbalance. Understanding these molecular pathways is crucial for developing targeted interventions and policy strategies to mitigate the adverse effects of environmental pollution on cardiovascular health. By integrating epidemiological and molecular evidence, this review provides insights into the complex interplay between environmental factors and CVDs, emphasizing the urgent need for comprehensive preventive measures and environmental policies to safeguard public health.

2.
Int J Mol Sci ; 25(16)2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39201428

RESUMEN

The transcription factor ΔNp63 plays a pivotal role in maintaining the integrity of stratified epithelial tissues by regulating the expression of distinct target genes involved in lineage specification, cell stemness, cell proliferation and differentiation. Here, we identified the ABC transporter subfamily member ABCC1 as a novel ΔNp63 target gene. We found that in immortalized human keratinocytes and in squamous cell carcinoma (SCC) cells, ∆Np63 induces the expression of ABCC1 by physically occupying a p63-binding site (p63 BS) located in the first intron of the ABCC1 gene locus. In cutaneous SCC and during the activation of the keratinocyte differentiation program, ∆Np63 and ABCC1 levels are positively correlated raising the possibility that ABCC1 might be involved in the regulation of the proliferative/differentiative capabilities of squamous tissue. However, we did not find any gross alteration in the structure and morphology of the epidermis in humanized hABCC1 knock-out mice. Conversely, we found that the genetic ablation of ABCC1 led to a marked reduction in inflammation-mediated proliferation of keratinocytes, suggesting that ABCC1 might be involved in the regulation of keratinocyte proliferation upon inflammatory/proliferative signals. In line with these observations, we found a significant increase in ABCC1 expression in squamous cell carcinomas (SCCs), a tumor type characterized by keratinocyte hyper-proliferation and a pro-inflammatory tumor microenvironment. Collectively, these data uncover ABCC1 as an additional ∆Np63 target gene potentially involved in those skin diseases characterized by dysregulation of proliferation/differentiation balance.


Asunto(s)
Carcinoma de Células Escamosas , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Queratinocitos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Neoplasias Cutáneas , Factores de Transcripción , Proteínas Supresoras de Tumor , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Animales , Queratinocitos/metabolismo , Queratinocitos/patología , Ratones , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proliferación Celular/genética , Diferenciación Celular/genética , Ratones Noqueados , Transactivadores/genética , Transactivadores/metabolismo , Línea Celular Tumoral
4.
Biol Direct ; 19(1): 66, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152485

RESUMEN

Breast cancer is the most common cause of death from cancer in women. Here, we present the case of a 43-year-old woman, who received a diagnosis of claudin-low luminal B breast cancer. The lesion revealed to be a poorly differentiated high-grade infiltrating ductal carcinoma, which was strongly estrogen receptor (ER)/progesterone receptor (PR) positive and human epidermal growth factor receptor (HER2) negative. Her tumor underwent in-depth chromosomal, mutational and gene expression analyses. We found a pathogenic protein truncating mutation in the TP53 gene, which is predicted to disrupt its transcriptional activity. The patient also harbors germline mutations in some mismatch repair (MMR) genes, and her tumor displays the presence of immune infiltrates, high tumor mutational burden (TMB) status and the apolipoprotein B mRNA editing enzyme catalytic polypeptide 3 (APOBEC3) associated signatures, which, overall, are predictive for the use of immunotherapy. Here, we propose promising prognostic indicators as well as potential therapeutic strategies based on the molecular characterization of the tumor.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Adulto , Neoplasias de la Mama/genética , Claudinas/genética , Claudinas/metabolismo , Mutación
5.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38892447

RESUMEN

Bisphenol-A (BPA), a synthetic compound ubiquitously present in the environment, can act as an endocrine disruptor by binding to both canonical and non-canonical estrogen receptors (ERs). Exposure to BPA has been linked to various cancers, in particular, those arising in hormone-targeted tissues such as the breast. In this study, we evaluated the effect of BPA intake through drinking water on ErbB2/neu-driven cancerogenesis in BALB-neuT mice, transgenic for a mutated ErbB2/neu receptor gene, which reproducibly develop carcinomas in all mammary glands. In this model, BPA accelerated mammary cancerogenesis with an increase in the number of tumors per mouse and a concurrent decrease in tumor-free and overall survival. As assessed by immunohistochemistry, BALB-neuT tumors were ER-negative but expressed high levels of the alternative estrogen receptor GPR30, regardless of BPA exposure. On the other hand, BPA exposure resulted in a marked upregulation of progesterone receptors in preinvasive tumors and of Ki67, CD31, and phosphorylated Akt in invasive tumors. Moreover, based on several infiltration markers of immune cells, BPA favored an immunosuppressive tumor microenvironment. Finally, in vitro cell survival studies performed on a cell line established from a BALB-neuT breast carcinoma confirmed that BPA's impact on cancer progression can be particularly relevant after chronic, low-dose exposure.


Asunto(s)
Compuestos de Bencidrilo , Ratones Endogámicos BALB C , Fenoles , Receptores de Estrógenos , Microambiente Tumoral , Animales , Microambiente Tumoral/efectos de los fármacos , Femenino , Ratones , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/genética , Agua Potable , Neoplasias Mamarias Experimentales/inducido químicamente , Neoplasias Mamarias Experimentales/patología , Neoplasias Mamarias Experimentales/metabolismo , Ratones Transgénicos , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores de Progesterona/metabolismo , Receptores de Progesterona/genética , Carcinogénesis/inducido químicamente , Carcinogénesis/efectos de los fármacos , Disruptores Endocrinos/toxicidad
6.
Cell Death Discov ; 10(1): 202, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688924

RESUMEN

The increasing incidence of urothelial bladder cancer is a notable global concern, as evidenced by the epidemiological data in terms of frequency, distribution, as well as mortality rates. Although numerous molecular alterations have been linked to the occurrence and progression of bladder cancer, currently there is a limited knowledge on the molecular signature able of accurately predicting clinical outcomes. In this report, we present a case of a pT3b high-grade infiltrating urothelial carcinoma with areas of squamous differentiation characterized by very high tumor mutational burden (TMB), with up-regulations of immune checkpoints. The high TMB, along with elevated expressions of PD-L1, PD-L2, and PD1, underscores the rationale for developing a personalized immunotherapy focused on the use of immune-checkpoint inhibitors. Additionally, molecular analysis revealed somatic mutations in several other cancer-related genes, including TP53, TP63 and NOTCH3. Mutations of TP53 and TP63 genes provide mechanistic insights on the molecular mechanisms underlying disease development and progression. Notably, the above-mentioned mutations and the elevated hypoxia score make the targeting of p53 and/or hypoxia related pathways a plausible personalized medicine option for this bladder cancer, particularly in combination with immunotherapy. Our data suggest a requirement for molecular profiling in bladder cancer to possibly select appropriate immune-checkpoint therapy.

7.
Discov Oncol ; 15(1): 80, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38512353

RESUMEN

Renal cell carcinoma originates from the lining of the proximal convoluted renal tubule and represents the most common type of kidney cancer. Risk factors and comorbidities might be associated to renal cell carcinoma, while a small fraction of 2-3% emerges from patients with predisposing cancer syndromes, typically associated to hereditary mutations in VHL, folliculin, fumarate hydratase or MET genes. Here, we report a case of renal cell carcinoma in patient with concurrent germline mutations in BRCA1 and RAD51 genes. This case displays an unusual high mutational burden and chromosomal aberrations compared to the typical profile of renal cell carcinoma. Mutational analysis on whole genome sequencing revealed an enrichment of the MMR2 mutational signature, which is indicative of impaired DNA repair capacity. Overall, the tumor displayed a profile of unusual high genomic instability which suggests a possible origin from germline predisposing mutations in the DNA repair genes BRCA1 and RAD51. While BRCA1 and RAD51 germline mutations are well-characterised in breast and ovarian cancer, their role in renal cell carcinoma is still largely unexplored. The genomic instability detected in this case of renal cell carcinoma, along with the presence of unusual mutations, might offer support to clinicians for the development of patient-tailored therapies.

8.
Discov Oncol ; 15(1): 10, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38228856

RESUMEN

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide, occurring predominantly in patients with underlying chronic liver disease and cirrhosis. Here, we describe a case of a 62-year-old man that was admitted to our hospital and diagnosed with HCC where the cancer has already metastasized to the retroperitoneum and peritoneum. In order to better characterize the HCC, both the cancerous liver tissue and the adjacent normal liver tissue of the patient were collected and subjected to a genomic, transcriptomic and proteomic analysis. Our patient carries a highly mutated HCC, which is characterized by both somatic mutation in the following genes ALK, CDK6, TP53, PGR. In addition, we observe several molecular alterations that are associated with potential therapy resistance, for example the expression of the organic-anion-transporting polypeptide (OATP) family members B1 and B3, that mediate the transport of the anticancer drugs, has been found decreased. Overall, our molecular profiling potentially classify the patient with poor prognosis and possibly displaying resistance to pharmacological therapy.

10.
Cell Death Discov ; 9(1): 365, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37783677

RESUMEN

Here, we present the case of a 47-year-old woman diagnosed with luminal B breast cancer subtype and provide an in-depth analysis of her gene mutations, chromosomal alterations, mRNA and protein expression changes. We found a point mutation in the FGFR2 gene, which is potentially hyper-activating the receptor function, along with over-expression of its ligand FGF20 due to genomic amplification. The patient also harbors somatic and germline mutations in some mismatch repair (MMR) genes, with a strong MMR mutational signature. The patient displays high microsatellite instability (MSI) and tumor mutational burden (TMB) status and increased levels of CTLA-4 and PD-1 expression. Altogether, these data strongly implicate that aberrant FGFR signaling, and defective MMR system might be involved in the development of this breast tumor. In addition, high MSI and TMB in the context of CTLA-4 and PD-L1 positivity, suggest the potential benefit of immune checkpoint inhibitors. Accurate characterization of molecular subtypes, based on gene mutational and expression profiling analyses, will be certainly helpful for individualized treatment and targeted therapy of breast cancer patients, especially for those subtypes with adverse outcome.

11.
Cell Death Discov ; 9(1): 370, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37813891

RESUMEN

Triple-negative breast cancer (TNBC) is the most aggressive subtype of mammary carcinoma. Here, we describe a case of an 81-year-old female diagnosed with ductal triple negative breast cancer with a germline pathogenic variant in BReast CAncer gene2 (BRCA2). Genetic testing also revealed the presence of four somatic mutations in the ephrin type-A receptor 3 (EphA3), TP53, BRCA1-associated protein (BAP1), and MYB genes. The BRCA2, TP53, and BAP1 gene mutations are highly predictive of a defective homologous recombination repair system and subsequent chromosomal instability in this patient. Coherently, the patient displayed a strong homologous recombination deficiency signature and high tumor mutational burden status, which are generally associated with increased probability of immune neoantigens formation and presentation, and with tumor immunogenicity. Analysis of immune checkpoint revealed high expression of programmed cell death ligand 1 (PD-L1), programmed cell death ligand 2 (PD-L2), programmed death 1 (PD1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA 4), suggesting that the patient might likely benefit from immunotherapies. Altogether, these findings support an unveiled link between BRCA2 inactivation, HR deficiency and increased expression of immune checkpoints in TNBC. This clinical case highlights the importance of screening TNBC patients for genetic mutations and TMB biomarkers in order to predict the potential efficacy of immunotherapy.

12.
Cell Death Dis ; 14(10): 691, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37863894

RESUMEN

Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of fatty deposits in the inner walls of vessels. These plaques restrict blood flow and lead to complications such as heart attack or stroke. The development of atherosclerosis is influenced by a variety of factors, including age, genetics, lifestyle, and underlying health conditions such as high blood pressure or diabetes. Atherosclerotic plaques in stable form are characterized by slow growth, which leads to luminal stenosis, with low embolic potential or in unstable form, which contributes to high risk for thrombotic and embolic complications with rapid clinical onset. In this complex scenario of atherosclerosis, macrophages participate in the whole process, including the initiation, growth and eventually rupture and wound healing stages of artery plaque formation. Macrophages in plaques exhibit high heterogeneity and plasticity, which affect the evolving plaque microenvironment, e.g., leading to excessive lipid accumulation, cytokine hyperactivation, hypoxia, apoptosis and necroptosis. The metabolic and functional transitions of plaque macrophages in response to plaque microenvironmental factors not only influence ongoing and imminent inflammatory responses within the lesions but also directly dictate atherosclerotic progression or regression. In this review, we discuss the origin of macrophages within plaques, their phenotypic diversity, metabolic shifts, and fate and the roles they play in the dynamic progression of atherosclerosis. It also describes how macrophages interact with other plaque cells, particularly T cells. Ultimately, targeting pathways involved in macrophage polarization may lead to innovative and promising approaches for precision medicine. Further insights into the landscape and biological features of macrophages within atherosclerotic plaques may offer valuable information for optimizing future clinical treatment for atherosclerosis by targeting macrophages.


Asunto(s)
Aterosclerosis , Infarto del Miocardio , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/patología , Aterosclerosis/patología , Macrófagos/metabolismo , Apoptosis , Infarto del Miocardio/metabolismo
13.
Cell Death Dis ; 14(8): 574, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644019

RESUMEN

Liver regeneration is a dynamic and regulated process that involves inflammation, granulation, and tissue remodeling. Hepatic macrophages, abundantly distributed in the liver, are essential components that actively participate in each step to orchestrate liver regeneration. In the homeostatic liver, resident macrophages (Kupffer cells) acquire a tolerogenic phenotype and contribute to immunological tolerance. Following toxicity-induced damage or physical resection, Kupffer cells as well as monocyte-derived macrophages can be activated and promote an inflammatory process that supports the survival and activation of hepatic myofibroblasts and thus promotes scar tissue formation. Subsequently, these macrophages, in turn, exhibit the anti-inflammatory effects critical to extracellular matrix remodeling during the resolution stage. However, continuous damage-induced chronic inflammation generally leads to hepatic macrophage dysfunction, which exacerbates hepatocellular injury and triggers further liver fibrosis and even cirrhosis. Emerging macrophage-targeting strategies have shown efficacy in both preclinical and clinical studies. Increasing evidence indicates that metabolic rewiring provides substrates for epigenetic modification, which endows monocytes/macrophages with prolonged "innate immune memory". Therefore, it is reasonable to conceive novel therapeutic strategies for metabolically reprogramming macrophages and thus mediate a homeostatic or reparative process for hepatic inflammation management and liver regeneration.


Asunto(s)
Macrófagos del Hígado , Regeneración Hepática , Humanos , Macrófagos , Homeostasis , Cirrosis Hepática , Inflamación
15.
Arch Toxicol ; 97(11): 2997-2998, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37597077
16.
Int J Mol Sci ; 24(15)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37569534

RESUMEN

The highly dynamic nature of chromatin's structure, due to the epigenetic alterations of histones and DNA, controls cellular plasticity and allows the rewiring of the epigenetic landscape required for either cell differentiation or cell (re)programming. To dissect the epigenetic switch enabling the programming of a cancer cell, we carried out wide genome analysis of Histone 3 (H3) modifications during osteogenic differentiation of SH-SY5Y neuroblastoma cells. The most significant modifications concerned H3K27me2/3, H3K9me2, H3K79me1/2, and H3K4me1 that specify the process of healthy adult stem cell differentiation. Next, we translated these findings in vivo, assessing H3K27, H3K9, and H3K79 methylation states in biopsies derived from patients affected by basalioma, head and neck carcinoma, and bladder tumors. Interestingly, we found a drastic decrease in H3K9me2 and H3K79me3 in cancer specimens with respect to their healthy counterparts and also a positive correlation between these two epigenetic flags in all three tumors. Therefore, we suggest that elevated global levels of H3K9me2 and H3K79me3, present in normal differentiated cells but lost in malignancy, may reflect an important epigenetic barrier to tumorigenesis. This suggestion is further corroborated, at least in part, by the deranged expression of the most relevant H3 modifier enzymes, as revealed by bioinformatic analysis. Overall, our study indicates that the simultaneous occurrence of H3K9me2 and H3K79me3 is fundamental to ensure the integrity of differentiated tissues and, thus, their combined evaluation may represent a novel diagnostic marker and potential therapeutic target.


Asunto(s)
Neuroblastoma , Osteogénesis , Adulto , Humanos , Neuroblastoma/genética , Histonas/metabolismo , Transformación Celular Neoplásica/genética , Epigénesis Genética
17.
Int J Mol Sci ; 24(13)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37446157

RESUMEN

Atherosclerotic cardiovascular disease is the most common cause of morbidity and death worldwide. Recent studies have demonstrated that this chronic inflammatory disease of the arterial wall can be controlled through the modulation of immune system activity. Many patients with cardiovascular disease remain at elevated risk of recurrent events despite receiving current, state-of-the-art preventive medical treatment. Much of this residual risk is attributed to inflammation. Therefore, finding new treatment strategies for this category of patients became of common interest. This review will discuss the experimental and clinical data supporting the possibility of developing immune-based therapies for lowering cardiovascular risk, explicitly focusing on vaccination strategies.


Asunto(s)
Aterosclerosis , Inmunomodulación , Humanos , Aterosclerosis/inmunología , Aterosclerosis/prevención & control , Aterosclerosis/terapia , Factores de Riesgo de Enfermedad Cardiaca , Inflamación , Vacunación/tendencias , Inmunidad Innata/inmunología , Inmunidad Adaptativa/inmunología , Inmunidad Humoral/inmunología , Autoantígenos/inmunología , Ensayos Clínicos como Asunto , Vacunas/inmunología , Vacunas/uso terapéutico
18.
Biol Direct ; 18(1): 40, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37464416

RESUMEN

Natural ageing of organisms and corresponding age-related diseases result mainly from stem cell ageing and "inflammaging". Mesenchymal stem cells (MSCs) exhibit very high immune-regulating capacity and are promising candidates for immune-related disease treatment. However, the effect of MSC application is not satisfactory for some patients, especially in elderly individuals. With ageing, MSCs undergo many changes, including altered cell population reduction and differentiation ability, reduced migratory and homing capacity and, most important, defective immunosuppression. It is necessary to explore the relationship between the "inflammaging" and aged MSCs to prevent age-related diseases and increase the therapeutic effects of MSCs. In this review, we discuss changes in naturally ageing MSCs mainly from an inflammation perspective and propose some ideas for rejuvenating aged MSCs in future treatments.


Asunto(s)
Inflamación , Células Madre Mesenquimatosas , Anciano , Humanos , Inflamación/terapia , Diferenciación Celular/fisiología
19.
Cancers (Basel) ; 15(14)2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37509299

RESUMEN

Cholangiocarcinoma is a highly aggressive cancer arising from the bile ducts. The limited effectiveness of conventional therapies has prompted the search for new approaches to target this disease. Recent evidence suggests that distinct programmed cell death mechanisms, namely, apoptosis, ferroptosis, pyroptosis and necroptosis, play a critical role in the development and progression of cholangiocarcinoma. This review aims to summarize the current knowledge on the role of programmed cell death in cholangiocarcinoma and its potential implications for the development of novel therapies. Several studies have shown that the dysregulation of apoptotic signaling pathways contributes to cholangiocarcinoma tumorigenesis and resistance to treatment. Similarly, ferroptosis, pyroptosis and necroptosis, which are pro-inflammatory forms of cell death, have been implicated in promoting immune cell recruitment and activation, thus enhancing the antitumor immune response. Moreover, recent studies have suggested that targeting cell death pathways could sensitize cholangiocarcinoma cells to chemotherapy and immunotherapy. In conclusion, programmed cell death represents a relevant molecular mechanism of pathogenesis in cholangiocarcinoma, and further research is needed to fully elucidate the underlying details and possibly identify therapeutic strategies.

20.
Nat Commun ; 14(1): 3795, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365156

RESUMEN

The transcription factor ΔNp63 regulates epithelial stem cell function and maintains the integrity of stratified epithelial tissues by acting as transcriptional repressor or activator towards a distinct subset of protein-coding genes and microRNAs. However, our knowledge of the functional link between ∆Np63 transcriptional activity and long non-coding RNAs (lncRNAs) expression is quite limited. Here, we show that in proliferating human keratinocytes ∆Np63 represses the expression of the lncRNA NEAT1 by recruiting the histone deacetylase HDAC1 to the proximal promoter of NEAT1 genomic locus. Upon induction of differentiation, ∆Np63 down-regulation is associated by a marked increase of NEAT1 RNA levels, resulting in an increased assembly of paraspeckles foci both in vitro and in human skin tissues. RNA-seq analysis associated with global DNA binding profile (ChIRP-seq) revealed that NEAT1 associates with the promoter of key epithelial transcription factors sustaining their expression during epidermal differentiation. These molecular events might explain the inability of NEAT1-depleted keratinocytes to undergo the proper formation of epidermal layers. Collectively, these data uncover the lncRNA NEAT1 as an additional player of the intricate network orchestrating epidermal morphogenesis.


Asunto(s)
Diferenciación Celular , Queratinocitos , ARN Largo no Codificante , Humanos , Diferenciación Celular/genética , Regulación hacia Abajo , Regulación de la Expresión Génica , MicroARNs , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA