Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
iScience ; 27(3): 109166, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38433895

RESUMEN

Cytoplasmic mislocalization and aggregation of the RNA-binding protein TDP-43 is a pathological hallmark of the motor neuron (MN) disease amyotrophic lateral sclerosis (ALS). Furthermore, while mutations in TARDBP (encoding TDP-43) have been associated with ALS, the pathogenic consequences of these mutations remain poorly understood. Using CRISPR-Cas9, we engineered two homozygous knock-in induced pluripotent stem cell lines carrying mutations in TARDBP encoding TDP-43A382T and TDP-43G348C, two common yet understudied ALS TDP-43 variants. Motor neurons (MNs) differentiated from knock-in iPSCs had normal viability and displayed no significant changes in TDP-43 subcellular localization, phosphorylation, solubility, or aggregation compared with isogenic control MNs. However, our results highlight synaptic impairments in both TDP-43A382T and TDP-43G348C MN cultures, as reflected in synapse abnormalities and alterations in spontaneous neuronal activity. Collectively, our findings suggest that MN dysfunction may precede the occurrence of TDP-43 pathology and neurodegeneration in ALS and further implicate synaptic and excitability defects in the pathobiology of this disease.

2.
Trends Mol Med ; 30(4): 339-349, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38472034

RESUMEN

Anorexia nervosa (AN) is a complex neuropsychiatric disorder with genetic and epigenetic components that results in reduced food intake combined with alterations in the reward-processing network. While studies of patient cohorts and mouse models have uncovered genes and epigenetic changes associated with the disease, neuronal networks and brain areas preferentially activated and metabolic changes associated with reduced food intake, the underlying molecular and cellular mechanisms remain unknown. The use of both 2D in vitro cultures and 3D models, namely organoids and spheroids, derived from either human embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs), would allow identification of cell type-specific changes associated with AN and comorbid diseases, to study preferential connections between brain areas and organs, and the development of therapeutic strategies.


Asunto(s)
Anorexia Nerviosa , Células Madre Pluripotentes Inducidas , Ratones , Animales , Humanos , Anorexia Nerviosa/metabolismo , Encéfalo , Neuronas/metabolismo , Modelos Animales de Enfermedad , Organoides
3.
Int J Mol Sci ; 24(19)2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37834379

RESUMEN

Fragile X syndrome (FXS) is caused by a repression of the FMR1 gene that codes the Fragile X mental retardation protein (FMRP), an RNA binding protein involved in processes that are crucial for proper brain development. To better understand the consequences of the absence of FMRP, we analyzed gene expression profiles and activities of cortical neural progenitor cells (NPCs) and neurons obtained from FXS patients' induced pluripotent stem cells (IPSCs) and IPSC-derived cells from FMR1 knock-out engineered using CRISPR-CAS9 technology. Multielectrode array recordings revealed in FMR1 KO and FXS patient cells, decreased mean firing rates; activities blocked by tetrodotoxin application. Increased expression of presynaptic mRNA and transcription factors involved in the forebrain specification and decreased levels of mRNA coding AMPA and NMDA subunits were observed using RNA sequencing on FMR1 KO neurons and validated using quantitative PCR in both models. Intriguingly, 40% of the differentially expressed genes were commonly deregulated between NPCs and differentiating neurons with significant enrichments in FMRP targets and autism-related genes found amongst downregulated genes. Our findings suggest that the absence of FMRP affects transcriptional profiles since the NPC stage, and leads to impaired activity and neuronal differentiation over time, which illustrates the critical role of FMRP protein in neuronal development.


Asunto(s)
Síndrome del Cromosoma X Frágil , Células Madre Pluripotentes Inducidas , Humanos , Animales , Ratones , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Neurogénesis/genética , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , ARN Mensajero/genética , Ratones Noqueados
4.
Neuron ; 111(19): 3028-3040.e6, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37473758

RESUMEN

Dysregulation of protein synthesis is one of the key mechanisms underlying autism spectrum disorder (ASD). However, the role of a major pathway controlling protein synthesis, the integrated stress response (ISR), in ASD remains poorly understood. Here, we demonstrate that the main arm of the ISR, eIF2α phosphorylation (p-eIF2α), is suppressed in excitatory, but not inhibitory, neurons in a mouse model of fragile X syndrome (FXS; Fmr1-/y). We further show that the decrease in p-eIF2α is mediated via activation of mTORC1. Genetic reduction of p-eIF2α only in excitatory neurons is sufficient to increase general protein synthesis and cause autism-like behavior. In Fmr1-/y mice, restoration of p-eIF2α solely in excitatory neurons reverses elevated protein synthesis and rescues autism-related phenotypes. Thus, we reveal a previously unknown causal relationship between excitatory neuron-specific translational control via the ISR pathway, general protein synthesis, and core phenotypes reminiscent of autism in a mouse model of FXS.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Síndrome del Cromosoma X Frágil , Animales , Ratones , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Neuronas/metabolismo , Fenotipo , Ratones Noqueados , Modelos Animales de Enfermedad
5.
Stem Cell Reports ; 17(3): 475-488, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35148845

RESUMEN

Heterozygous loss-of-function mutations in Forkhead box G1 (FOXG1), a uniquely brain-expressed gene, cause microcephaly, seizures, and severe intellectual disability, whereas increased FOXG1 expression is frequently observed in glioblastoma. To investigate the role of FOXG1 in forebrain cell proliferation, we modeled FOXG1 syndrome using cells from three clinically diagnosed cases with two sex-matched healthy parents and one unrelated sex-matched control. Cells with heterozygous FOXG1 loss showed significant reduction in cell proliferation, increased ratio of cells in G0/G1 stage of the cell cycle, and increased frequency of primary cilia. Engineered loss of FOXG1 recapitulated this effect, while isogenic repair of a patient mutation reverted output markers to wild type. An engineered inducible FOXG1 cell line derived from a FOXG1 syndrome case demonstrated that FOXG1 dose-dependently affects all cell proliferation outputs measured. These findings provide strong support for the critical importance of FOXG1 levels in controlling human brain cell growth in health and disease.


Asunto(s)
Factores de Transcripción Forkhead , Proteínas del Tejido Nervioso , Proliferación Celular , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Humanos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Prosencéfalo/metabolismo , Células Madre/metabolismo , Síndrome
7.
iScience ; 24(10): 103169, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34693223

RESUMEN

Cocaine dependence is a chronic, relapsing disorder caused by lasting changes in the brain. Animal studies have identified cocaine-related alterations in striatal DNA methylation; however, it is unclear how methylation is related to cocaine dependence in humans. We generated methylomic profiles of the nucleus accumbens using human postmortem brains from a cohort of individuals with cocaine dependence and healthy controls (n = 25 per group). We found hypermethylation in a cluster of CpGs within the gene body of tyrosine hydroxylase (TH), containing a putative binding site for the early growth response 1 (EGR1) transcription factor, which is hypermethylated in the caudate nucleus of cocaine-dependent individuals. We replicated this finding and found it to be specific to striatal neuronal nuclei. Furthermore, this locus demonstrates enhancer activity which is attenuated by methylation and enhanced by EGR1 overexpression. These results suggest that cocaine dependence alters the epigenetic regulation of dopaminergic signaling genes.

8.
Brain Commun ; 3(4): fcab223, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34632384

RESUMEN

SNCA, the first gene associated with Parkinson's disease, encodes the α-synuclein protein, the predominant component within pathological inclusions termed Lewy bodies. The presence of Lewy bodies is one of the classical hallmarks found in the brain of patients with Parkinson's disease, and Lewy bodies have also been observed in patients with other synucleinopathies. However, the study of α-synuclein pathology in cells has relied largely on two-dimensional culture models, which typically lack the cellular diversity and complex spatial environment found in the brain. Here, to address this gap, we use three-dimensional midbrain organoids, differentiated from human-induced pluripotent stem cells derived from patients carrying a triplication of the SNCA gene and from CRISPR/Cas9 corrected isogenic control iPSCs. These human midbrain organoids recapitulate key features of α-synuclein pathology observed in the brains of patients with synucleinopathies. In particular, we find that SNCA triplication human midbrain organoids express elevated levels of α-synuclein and exhibit an age-dependent increase in α-synuclein aggregation, manifested by the presence of both oligomeric and phosphorylated forms of α-synuclein. These phosphorylated α-synuclein aggregates were found in both neurons and glial cells and their time-dependent accumulation correlated with a selective reduction in dopaminergic neuron numbers. Thus, human midbrain organoids from patients carrying SNCA gene multiplication can reliably model key pathological features of Parkinson's disease and provide a powerful system to study the pathogenesis of synucleinopathies.

9.
Sci Rep ; 11(1): 21293, 2021 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34716395

RESUMEN

Quantifying changes in DNA and RNA levels is essential in numerous molecular biology protocols. Quantitative real time PCR (qPCR) techniques have evolved to become commonplace, however, data analysis includes many time-consuming and cumbersome steps, which can lead to mistakes and misinterpretation of data. To address these bottlenecks, we have developed an open-source Python software to automate processing of result spreadsheets from qPCR machines, employing calculations usually performed manually. Auto-qPCR is a tool that saves time when computing qPCR data, helping to ensure reproducibility of qPCR experiment analyses. Our web-based app ( https://auto-q-pcr.com/ ) is easy to use and does not require programming knowledge or software installation. Using Auto-qPCR, we provide examples of data treatment, display and statistical analyses for four different data processing modes within one program: (1) DNA quantification to identify genomic deletion or duplication events; (2) assessment of gene expression levels using an absolute model, and relative quantification (3) with or (4) without a reference sample. Our open access Auto-qPCR software saves the time of manual data analysis and provides a more systematic workflow, minimizing the risk of errors. Our program constitutes a new tool that can be incorporated into bioinformatic and molecular biology pipelines in clinical and research labs.


Asunto(s)
Biología Computacional/métodos , Análisis de Datos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Algoritmos , Humanos , Programas Informáticos
10.
Methods Protoc ; 4(3)2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34287353

RESUMEN

Induced pluripotent stem cells (iPSCs) derived from human somatic cells have created new opportunities to generate disease-relevant cells. Thus, as the use of patient-derived stem cells has become more widespread, having a workflow to monitor each line is critical. This ensures iPSCs pass a suite of quality-control measures, promoting reproducibility across experiments and between labs. With this in mind, we established a multistep workflow to assess our newly generated iPSCs. Our workflow tests four benchmarks: cell growth, genomic stability, pluripotency, and the ability to form the three germline layers. We also outline a simple test for assessing cell growth and highlight the need to compare different growth media. Genomic integrity in the human iPSCs is analyzed by G-band karyotyping and a qPCR-based test for the detection of common karyotypic abnormalities. Finally, we confirm that the iPSC lines can differentiate into a given cell type, using a trilineage assay, and later confirm that each iPSC can be differentiated into one cell type of interest, with a focus on the generation of cortical neurons. Taken together, we present a multistep quality-control workflow to evaluate newly generated iPSCs and detail the findings on these lines as they are tested within the workflow.

11.
Mol Psychiatry ; 26(8): 3751-3764, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-31907380

RESUMEN

High impulsive and aggressive traits associate with poor behavioural self-control. Despite their importance in predicting behavioural negative outcomes including suicide, the molecular mechanisms underlying the expression of impulsive and aggressive traits remain poorly understood. Here, we identified and characterized a novel long noncoding RNA (lncRNA), acting as a regulator of the monoamine oxidase A (MAOA) gene in the brain, and named it MAOA-associated lncRNA (MAALIN). Our results show that in the brain of suicide completers, MAALIN is regulated by a combination of epigenetic mechanisms including DNA methylation and chromatin modifications. Elevated MAALIN in the dentate gyrus of impulsive-aggressive suicides was associated with lower MAOA expression. Viral overexpression of MAALIN in neuroprogenitor cells decreased MAOA expression while CRISPR-mediated knock out resulted in elevated MAOA expression. Using viral-mediated gene transfer, we confirmed that MAALIN in the hippocampus significantly decreases MAOA expression and exacerbates the expression of impulsive-aggressive behavioural traits in CD1 aggressive mice. Overall, our findings suggest that variations in DNA methylation mediate the differential expression of a novel lncRNA that acts on MAOA expression to regulate impulsive-aggressive behaviours.


Asunto(s)
Agresión , Conducta Impulsiva , ARN Largo no Codificante , Suicidio , Animales , Genotipo , Humanos , Ratones , Monoaminooxidasa/genética , ARN Largo no Codificante/genética
12.
Neurosci Lett ; 731: 135028, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32380146

RESUMEN

Astrocytes play a number of key functions in health and disease. Activated astrocytes are present in most, if not all, neurological diseases. Most current information on the mechanisms underlying reactive astrocyte emergence derives from studies using animal experimental systems, mainly because the ability to study human astrocytes under healthy and pathological conditions has been hampered by the difficulty in obtaining primary human astrocytes. Here we describe robust and reliable derivation of astrocytes from human induced pluripotent stem cells (iPSCs). Phenotypically characterized human iPSC-derived astrocytes exhibit typical traits of physiological astrocytes, including spontaneous and induced calcium transients. Moreover, human iPSC-derived astrocytes respond to stimulation with a pro-inflammatory combination of tumor necrosis factor-alpha, interleukin 1-alpha, and complement component C1q by undergoing changes in gene expression patterns suggesting acquisition of a reactive astrocyte phenotype. Together, these findings provide evidence suggesting that human iPSC-derived astrocytes are a suitable experimental model system to study astrocyte function and reactivation in healthy and pathological conditions of the human nervous system.


Asunto(s)
Astrocitos/metabolismo , Diferenciación Celular/fisiología , Descubrimiento de Drogas , Células Madre Pluripotentes Inducidas/citología , Células-Madre Neurales/citología , Calcio/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Descubrimiento de Drogas/métodos , Humanos , Células-Madre Neurales/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo
13.
Stem Cells Transl Med ; 9(6): 697-712, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32154672

RESUMEN

Making high-quality dopamine (DA)-producing cells for basic biological or small molecule screening studies is critical for the development of novel therapeutics for disorders of the ventral midbrain. Currently, many ventral midbrain assays have low signal-to-noise ratio due to low levels of cellular DA and the rate-limiting enzyme of DA synthesis, tyrosine hydroxylase (TH), hampering discovery efforts. Using intensively characterized ventral midbrain cells derived from human skin, which demonstrate calcium pacemaking activity and classical electrophysiological properties, we show that an L-type calcium agonist can significantly increase TH protein levels and DA content and release. Live calcium imaging suggests that it is the immediate influx of calcium occurring simultaneously in all cells that drives this effect. Genome-wide expression profiling suggests that L-type calcium channel stimulation has a significant effect on specific genes related to DA synthesis and affects expression of L-type calcium receptor subunits from the CACNA1 and CACNA2D families. Together, our findings provide an advance in the ability to increase DA and TH levels to improve the accuracy of disease modeling and small molecule screening for disorders of the ventral midbrain, including Parkinson's disease.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Dopamina/metabolismo , Mesencéfalo/citología , Tirosina 3-Monooxigenasa/metabolismo , Ácido 3-piridinacarboxílico, 1,4-dihidro-2,6-dimetil-5-nitro-4-(2-(trifluorometil)fenil)-, Éster Metílico/farmacología , Calcio/metabolismo , Diferenciación Celular , Línea Celular , Forma de la Célula/efectos de los fármacos , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Fenómenos Electrofisiológicos , Factor Nuclear 3-beta del Hepatocito/metabolismo , Humanos , Células-Madre Neurales/citología , Transcriptoma/genética
14.
Front Nutr ; 6: 118, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31457016

RESUMEN

Anorexia nervosa (AN) is a dramatic psychiatric disorder characterized by dysregulations in food intake and reward processing, involving molecular and cellular changes in several peripheral cell types and central neuronal networks. Genomic and epigenomic analyses have allowed the identification of multiple genetic and epigenetic modifications highlighting the complex pathophysiology of AN. Behavioral and genetic rodent models have been used to recapitulate and investigate, with some limitations, the cellular and molecular changes that potentially underlie eating disorders. In the last 5 years, the use of induced pluripotent stem cells (IPSCs), combined with CRISPR-Cas9 technology, has led to the generation of specific neuronal cell subtypes engineered from human somatic samples, representing a powerful tool to complement observations made in human samples and data collected from animal models. Systems biology using IPSCs has indeed proved to be a valuable approach for the study of metabolic disorders, in addition to neurodevelopmental and psychiatric disorders. The manuscript, while reviewing the main findings related to the genetic, epigenetic, and cellular bases of AN, will present how new studies published, or to be performed, in the field of IPSC-derived cells should improve our current understanding of the pathophysiology of AN and provide potential therapeutic strategies addressing specific endophenotypes.

15.
Front Pediatr ; 7: 225, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31245336

RESUMEN

Autism Spectrum Disorders (ASDs) is a multigenic and multifactorial neurodevelopmental group of disorders diagnosed in early childhood, leading to deficits in social interaction, verbal and non-verbal communication and characterized by restricted and repetitive behaviors and interests. To date, genetic, descriptive and mechanistic aspects of the ASDs have been investigated using mouse models and post-mortem brain tissue. More recently, the technology to generate stem cells from patients' samples has brought a new avenue for modeling ASD through 2D and 3D neuronal models that are derived from a patient's own cells, with the goal of building new therapeutic strategies for treating ASDs. This review analyses how studies performed on mouse models and human samples can complement each other, advancing our current knowledge into the pathophysiology of the ASDs. Regardless of the genetic and phenotypic heterogeneities of ASDs, convergent information regarding the molecular and cellular mechanisms involved in these disorders can be extracted from these models. Thus, considering the complexities of these disorders, patient-derived models have immense potential to elucidate molecular deregulations that contributed to the different autistic phenotypes. Through these direct investigations with the human in vitro models, they offer the potential for opening new therapeutic avenues that can be translated into the clinic.

16.
Behav Brain Res ; 359: 903-909, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29935919

RESUMEN

Autistic spectrum disorders (ASDs) are neurodevelopmental disorders for which genetic components have been well defined. However, specific gene deregulations related to synapse function in the autistic brain have not been as extensively described. Based on a candidate genes approach, we present in this study the expression data of 4 transcripts of interest (BDNF, CAMK2a, NR-CAM and RIMS1) located at the synapse in two regions of interest in the context of the ASDs; the lobule VI of cerebellum and the Brodmann area 46. We have also genotyped in our cohort the coding single nucleotide polymorphism rs6265, located in the BDNF gene. After correction for age and sex, whereas no change was observed in the lobule VI between controls and autistic patients, we found a significant increase of BDNF expression level in the BA46 from autistic patients. No significant interaction between the rs6265 genotype and autism was observed for the BDNF expression. However, "A" allele carriers are more likely to have increased BDNF levels. Finally, we found a significant positive correlation between BDNF and RIMS1 expression levels. Our data suggest that these two molecules which are involved in cell signalling at the synapse, might have coordinated expressions and, that BDNF regulation in the brain has to be investigated further in the context of ASDs.


Asunto(s)
Trastorno Autístico/patología , Factor Neurotrófico Derivado del Encéfalo/genética , Lóbulo Frontal/metabolismo , Regulación de la Expresión Génica/fisiología , ARN Mensajero/metabolismo , Adolescente , Adulto , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Niño , Preescolar , Diagnóstico , Femenino , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Genotipo , Humanos , Captura por Microdisección con Láser , Modelos Lineales , Masculino , Persona de Mediana Edad , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Adulto Joven
17.
Stem Cell Reports ; 11(1): 183-196, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29937144

RESUMEN

Heterozygous loss-of-function mutations in GRIN2B, a subunit of the NMDA receptor, cause intellectual disability and language impairment. We developed clonal models of GRIN2B deletion and loss-of-function mutations in a region coding for the glutamate binding domain in human cells and generated neurons from a patient harboring a missense mutation in the same domain. Transcriptome analysis revealed extensive increases in genes associated with cell proliferation and decreases in genes associated with neuron differentiation, a result supported by extensive protein analyses. Using electrophysiology and calcium imaging, we demonstrate that NMDA receptors are present on neural progenitor cells and that human mutations in GRIN2B can impair calcium influx and membrane depolarization even in a presumed undifferentiated cell state, highlighting an important role for non-synaptic NMDA receptors. It may be this function, in part, which underlies the neurological disease observed in patients with GRIN2B mutations.


Asunto(s)
Diferenciación Celular , Mutación , Neuronas/citología , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Biomarcadores , Diferenciación Celular/genética , Análisis Mutacional de ADN , Reparación del ADN , Dosificación de Gen , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Mutación con Pérdida de Función , Modelos Moleculares , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Conformación Proteica , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo
18.
Addict Biol ; 23(1): 448-460, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28074533

RESUMEN

Netrin G1 is a presynaptic ligand involved in axonal projection. Although molecular mechanisms underlying cocaine addiction are still poorly understood, Netrin G1 might have a role as a regulator of anxiety, fear and spatial memory, behavioural traits impaired in the context of cocaine exposure. In this study, the Netrin G1 (Ntng1) expression was investigated in the nucleus accumbens of mice primarily conditioned to cocaine using a place preference paradigm. A genetic association study was then conducted on 146 multiplex families of the Collaborative study on Genetics of Alcoholism, in which seven single nucleotide polymorphisms located in the NTNG1 gene were genotyped. NTNG1 expression levels were also quantified in BA10, BA46 and the cerebellum of healthy controls (with no Axis 1 psychopathology). Decreased Ntng1 expression was initially observed in the nucleus accumbens of mice conditioned to cocaine. Significant genetic family-based associations were detected between NTNG1 polymorphisms and cocaine dependence. NTNG1 expression in BA10, BA46 and the cerebellum, however, were not significantly associated with any allele or haplotype of this gene. These results confirm that Ntng1 expression is disturbed in the nucleus accumbens of mice, after cocaine conditioning. A haplotype of NTNG1 was found to constitute a vulnerability factor for cocaine use disorder in patients, although none of its single nucleotide polymorphisms were associated with a differential expression pattern in healthy controls. The data suggest that change in the Ntng1 expression is a consequence of cocaine exposure, and that some of its genetic markers are associated with a greater risk for cocaine use disorder.


Asunto(s)
Trastornos Relacionados con Cocaína/genética , Cocaína , Condicionamiento Psicológico , Inhibidores de Captación de Dopamina , Netrinas/genética , Núcleo Accumbens/metabolismo , Adulto , Animales , Estudios de Casos y Controles , Cerebelo/metabolismo , Trastornos Relacionados con Cocaína/metabolismo , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Humanos , Ratones , Netrinas/metabolismo , Polimorfismo de Nucleótido Simple , ARN Mensajero/metabolismo
19.
Biol Psychiatry ; 84(10): 751-761, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28886759

RESUMEN

BACKGROUND: Experiences of abuse and neglect during childhood are major predictors of the emergence of depressive and suicidal behaviors throughout life. The underlying biological mechanisms, however, remain poorly understood. Here, we focused on the opioid system as a potential brain substrate mediating these effects. METHODS: Postmortem samples from three brain structures regulating social bonds and emotions were analyzed. Groups were constituted of depressed individuals who died by suicide, with or without a history of severe child abuse, and of psychiatrically healthy control subjects. Expression of opioid peptides and receptors was measured using real-time polymerase chain reaction. DNA methylation, a major epigenetic mark, was investigated using targeted bisulfite sequencing and characterized at functional level using in vitro reporter assays. Finally, oxidative bisulfite sequencing was used to differentiate methylation and hydroxymethylation of DNA. RESULTS: A history of child abuse specifically associated in the anterior insula with a downregulation of the kappa opioid receptor (Kappa), as well as decreased DNA methylation in the second intron of the Kappa gene. In vitro assays further showed that this intron functions as a genomic enhancer where glucocorticoid receptor binding regulates Kappa expression, unraveling a new mechanism mediating the well-established interactions between endogenous opioids and stress. Finally, results showed that child abuse is associated in the Kappa intron with a selective reduction in levels of DNA hydroxymethylation, likely mediating the observed downregulation of the receptor. CONCLUSIONS: Altogether, our findings uncover new facets of Kappa physiology, whereby this receptor may be epigenetically regulated by stressful experiences, in particular as a function of early social life.


Asunto(s)
Maltrato a los Niños , Epigénesis Genética , Regiones Promotoras Genéticas , Receptores Opioides kappa/genética , Adulto , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Niño , Metilación de ADN , Trastorno Depresivo/genética , Trastorno Depresivo/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Suicidio , Tálamo/metabolismo , Tálamo/patología
20.
Stem Cells Transl Med ; 6(3): 886-896, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28170165

RESUMEN

The development of targeted therapeutics for rare neurodevelopmental disorders (NDDs) faces significant challenges due to the scarcity of subjects and the difficulty of obtaining human neural cells. Here, we illustrate a rapid, simple protocol by which patient derived cells can be reprogrammed to induced pluripotent stem cells (iPSCs) using an episomal vector and differentiated into neurons. Using this platform enables patient somatic cells to be converted to physiologically active neurons in less than two months with minimal labor. This platform includes a method to combine somatic cell reprogramming with CRISPR/Cas9 gene editing at single cell resolution, which enables the concurrent development of clonal knockout or knock-in models that can be used as isogenic control lines. This platform reduces the logistical barrier for using iPSC technology, allows for the development of appropriate control lines for use in rare neurodevelopmental disease research, and establishes a fundamental component to targeted therapeutics and precision medicine. Stem Cells Translational Medicine 2017;6:886-896.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Edición Génica , Modelos Biológicos , Trastornos del Neurodesarrollo/patología , Secuencia de Bases , Diferenciación Celular , Fibroblastos/patología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mesencéfalo/patología , Neuronas/patología , Prosencéfalo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA