Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Arterioscler Thromb Vasc Biol ; 44(4): 930-945, 2024 Apr.
Article En | MEDLINE | ID: mdl-38385291

BACKGROUND: Atherosclerotic plaques are complex tissues composed of a heterogeneous mixture of cells. However, our understanding of the comprehensive transcriptional and phenotypic landscape of the cells within these lesions is limited. METHODS: To characterize the landscape of human carotid atherosclerosis in greater detail, we combined cellular indexing of transcriptomes and epitopes by sequencing and single-cell RNA sequencing to classify all cell types within lesions (n=21; 13 symptomatic) to achieve a comprehensive multimodal understanding of the cellular identities of atherosclerosis and their association with clinical pathophysiology. RESULTS: We identified 25 cell populations, each with a unique multiomic signature, including macrophages, T cells, NK (natural killer) cells, mast cells, B cells, plasma cells, neutrophils, dendritic cells, endothelial cells, fibroblasts, and smooth muscle cells (SMCs). Among the macrophages, we identified 2 proinflammatory subsets enriched in IL-1B (interleukin-1B) or C1Q expression, 2 TREM2-positive foam cells (1 expressing inflammatory genes), and subpopulations with a proliferative gene signature and SMC-specific gene signature with fibrotic pathways upregulated. Further characterization revealed various subsets of SMCs and fibroblasts, including SMC-derived foam cells. These foamy SMCs were localized in the deep intima of coronary atherosclerotic lesions. Utilizing cellular indexing of transcriptomes and epitopes by sequencing data, we developed a flow cytometry panel, using cell surface proteins CD29, CD142, and CD90, to isolate SMC-derived cells from lesions. Lastly, we observed reduced proportions of efferocytotic macrophages, classically activated endothelial cells, and contractile and modulated SMC-derived cells, while inflammatory SMCs were enriched in plaques of clinically symptomatic versus asymptomatic patients. CONCLUSIONS: Our multimodal atlas of cell populations within atherosclerosis provides novel insights into the diversity, phenotype, location, isolation, and clinical relevance of the unique cellular composition of human carotid atherosclerosis. These findings facilitate both the mapping of cardiovascular disease susceptibility loci to specific cell types and the identification of novel molecular and cellular therapeutic targets for the treatment of the disease.


Atherosclerosis , Carotid Artery Diseases , Plaque, Atherosclerotic , Humans , Endothelial Cells/metabolism , Atherosclerosis/pathology , Plaque, Atherosclerotic/pathology , Carotid Artery Diseases/pathology , Epitopes/metabolism , Myocytes, Smooth Muscle/metabolism
2.
medRxiv ; 2023 Jul 16.
Article En | MEDLINE | ID: mdl-37502836

Background: Atherosclerotic plaques are complex tissues composed of a heterogeneous mixture of cells. However, we have limited understanding of the comprehensive transcriptional and phenotypical landscape of the cells within these lesions. Methods: To characterize the landscape of human carotid atherosclerosis in greater detail, we combined cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) and single-cell RNA sequencing (scRNA-seq) to classify all cell types within lesions (n=21; 13 symptomatic) to achieve a comprehensive multimodal understanding of the cellular identities of atherosclerosis and their association with clinical pathophysiology. Results: We identified 25 distinct cell populations each having a unique multi-omic signature, including macrophages, T cells, NK cells, mast cells, B cells, plasma cells, neutrophils, dendritic cells, endothelial cells, fibroblasts, and smooth muscle cells (SMCs). Within the macrophage populations, we identified 2 proinflammatory subsets that were enriched in IL1B or C1Q expression, 2 distinct TREM2 positive foam cell subsets, one of which also expressed inflammatory genes, as well as subpopulations displaying a proliferative gene expression signature and one expressing SMC-specific genes and upregulation of fibrotic pathways. An in-depth characterization uncovered several subsets of SMCs and fibroblasts, including a SMC-derived foam cell. We localized this foamy SMC to the deep intima of coronary atherosclerotic lesions. Using CITE-seq data, we also developed the first flow cytometry panel, using cell surface proteins CD29, CD142, and CD90, to isolate SMC-derived cells from lesions. Last, we found that the proportion of efferocytotic macrophages, classically activated endothelial cells, contractile and modulated SMC-derived cell types were reduced, and inflammatory SMCs were enriched in plaques of clinically symptomatic vs. asymptomatic patients. Conclusions: Our multimodal atlas of cell populations within atherosclerosis provides novel insights into the diversity, phenotype, location, isolation, and clinical relevance of the unique cellular composition of human carotid atherosclerosis. This facilitates both the mapping of cardiovascular disease susceptibility loci to specific cell types as well as the identification of novel molecular and cellular therapeutic targets for treatment of the disease.

4.
JACC Case Rep ; 3(7): 1051-1054, 2021 Jul 07.
Article En | MEDLINE | ID: mdl-34317682

Most heart failure hospitalizations are due to volume overload; however, it is not easily evaluated by physical examination. Avoidance of diuresis in patients with fluid overload to avoid acute kidney injury increases morbidity in heart failure. We hypothesize that fractional excretion of urate can be used to guide diuresis. (Level of Difficulty: Advanced.).

5.
Arterioscler Thromb Vasc Biol ; 38(8): 1901-1912, 2018 08.
Article En | MEDLINE | ID: mdl-29976772

Objective- Coronary artery thrombosis can occur in the absence of plaque rupture because of superficial erosion. Erosion-prone atheromata associate with more neutrophil extracellular traps (NETs) than lesions with stable or rupture-prone characteristics. The effects of NETs on endothelial cell (EC) inflammatory and thrombogenic properties remain unknown. We hypothesized that NETs alter EC functions related to erosion-associated thrombosis. Approach and Results- Exposure of human ECs to NETs increased VCAM-1 (vascular cell adhesion molecule 1) and ICAM-1 (intercellular adhesion molecule 1) mRNA and protein expression in a time- and concentration-dependent manner. THP-1 monocytoid cells and primary human monocytes bound more avidly to NET-treated human umbilical vein ECs than to unstimulated cells under flow. Treatment of human ECs with NETs augmented the expression of TF (tissue factor) mRNA, increased EC TF activity, and hastened clotting of recalcified plasma. Anti-TF-neutralizing antibody blocked NET-induced acceleration of clotting by ECs. NETs alone did not exhibit TF activity or acceleration of clotting in cell-free assays. Pretreatment of NETs with anti-interleukin (IL)-1α-neutralizing antibody or IL-1Ra (IL-1 receptor antagonist)-but not with anti-IL-1ß-neutralizing antibody or control IgG-blocked NET-induced VCAM-1, ICAM-1, and TF expression. Inhibition of cathepsin G, a serine protease abundant in NETs, also limited the effect of NETs on EC activation. Cathepsin G potentiated the effect of IL-1α on ECs by cleaving the pro-IL-1α precursor and releasing the more potent mature IL-1α form. Conclusions- NETs promote EC activation and increased thrombogenicity through concerted action of IL-1α and cathepsin G. Thus, NETs may amplify and propagate EC dysfunction related to thrombosis because of superficial erosion.


Blood Coagulation , Cathepsin G/metabolism , Extracellular Traps/enzymology , Human Umbilical Vein Endothelial Cells/enzymology , Interleukin-1alpha/metabolism , Neutrophils/enzymology , Paracrine Communication , Thromboplastin/metabolism , Cell Adhesion , Coculture Techniques , Humans , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Signal Transduction , THP-1 Cells , Thromboplastin/genetics , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/metabolism
6.
Circ Res ; 123(1): 33-42, 2018 06 22.
Article En | MEDLINE | ID: mdl-29572206

RATIONALE: Neutrophils likely contribute to the thrombotic complications of human atheromata. In particular, neutrophil extracellular traps (NETs) could exacerbate local inflammation and amplify and propagate arterial intimal injury and thrombosis. PAD4 (peptidyl arginine deiminase 4) participates in NET formation, but an understanding of this enzyme's role in atherothrombosis remains scant. OBJECTIVE: This study tested the hypothesis that PAD4 and NETs influence experimental atherogenesis and in processes implicated in superficial erosion, a form of plaque complication we previously associated with NETs. METHODS AND RESULTS: Bone marrow chimeric Ldlr deficient mice reconstituted with either wild-type or PAD4-deficient cells underwent studies that assessed atheroma formation or procedures designed to probe mechanisms related to superficial erosion. PAD4 deficiency neither retarded fatty streak formation nor reduced plaque size or inflammation in bone marrow chimeric mice that consumed an atherogenic diet. In contrast, either a PAD4 deficiency in bone marrow-derived cells or administration of DNaseI to disrupt NETs decreased the extent of arterial intimal injury in mice with arterial lesions tailored to recapitulate characteristics of human atheroma complicated by erosion. CONCLUSIONS: These results indicate that PAD4 from bone marrow-derived cells and NETs do not influence chronic experimental atherogenesis, but participate causally in acute thrombotic complications of intimal lesions that recapitulate features of superficial erosion.


Extracellular Traps/physiology , Hydrolases/physiology , Plaque, Atherosclerotic/etiology , Thrombosis/etiology , Animals , Bone Marrow Transplantation , Carotid Artery Diseases/etiology , Carotid Artery Diseases/pathology , Cell Death , Deoxyribonuclease I/pharmacology , Extracellular Traps/drug effects , Humans , Hydrolases/deficiency , Male , Mice , Mice, Inbred C57BL , Neutrophils/physiology , Osteomyelitis/etiology , Plaque, Atherosclerotic/pathology , Protein-Arginine Deiminase Type 4 , Thrombosis/prevention & control , Tunica Intima/injuries
7.
Curr Opin Lipidol ; 28(5): 434-441, 2017 Oct.
Article En | MEDLINE | ID: mdl-28682809

PURPOSE OF REVIEW: The present review explores the mechanisms of superficial intimal erosion, a common cause of thrombotic complications of atherosclerosis. RECENT FINDINGS: Human coronary artery atheroma that give rise to thrombosis because of erosion differ diametrically from those associated with fibrous cap rupture. Eroded lesions characteristically contain few inflammatory cells, abundant extracellular matrix, and neutrophil extracellular traps (NETs). Innate immune mechanisms such as engagement of Toll-like receptor 2 (TLR2) on cultured endothelial cells can impair their viability, attachment, and ability to recover a wound. Hyaluronan fragments may serve as endogenous TLR2 ligands. Mouse experiments demonstrate that flow disturbance in arteries with neointimas tailored to resemble features of human eroded plaques disturbs endothelial cell barrier function, impairs endothelial cell viability, recruits neutrophils, and provokes endothelial cells desquamation, NET formation, and thrombosis in a TLR2-dependent manner. SUMMARY: Mechanisms of erosion have received much less attention than those that provoke plaque rupture. Intensive statin treatment changes the characteristic of plaques that render them less susceptible to rupture. Thus, erosion may contribute importantly to the current residual burden of risk. Understanding the mechanisms of erosion may inform the development and deployment of novel therapies to combat the remaining atherothrombotic risk in the statin era.


Plaque, Atherosclerotic/pathology , Animals , Humans , Plaque, Atherosclerotic/complications , Plaque, Atherosclerotic/metabolism , Thrombosis/complications , Toll-Like Receptor 2/metabolism
8.
Circ Res ; 121(1): 31-42, 2017 Jun 23.
Article En | MEDLINE | ID: mdl-28428204

RATIONALE: Superficial erosion currently causes up to a third of acute coronary syndromes; yet, we lack understanding of its mechanisms. Thrombi because of superficial intimal erosion characteristically complicate matrix-rich atheromata in regions of flow perturbation. OBJECTIVE: This study tested in vivo the involvement of disturbed flow and of neutrophils, hyaluronan, and Toll-like receptor 2 ligation in superficial intimal injury, a process implicated in superficial erosion. METHODS AND RESULTS: In mouse carotid arteries with established intimal lesions tailored to resemble the substrate of human eroded plaques, acute flow perturbation promoted downstream endothelial cell activation, neutrophil accumulation, endothelial cell death and desquamation, and mural thrombosis. Neutrophil loss-of-function limited these findings. Toll-like receptor 2 agonism activated luminal endothelial cells, and deficiency of this innate immune receptor decreased intimal neutrophil adherence in regions of local flow disturbance, reducing endothelial cell injury and local thrombosis (P<0.05). CONCLUSIONS: These results implicate flow disturbance, neutrophils, and Toll-like receptor 2 signaling as mechanisms that contribute to superficial erosion, a cause of acute coronary syndrome of likely growing importance in the statin era.


Blood Flow Velocity/physiology , Endothelium, Vascular/metabolism , Neutrophil Infiltration/physiology , Toll-Like Receptor 2/deficiency , Animals , Bone Marrow Transplantation/methods , Carotid Stenosis/metabolism , Carotid Stenosis/pathology , Cells, Cultured , Endothelium, Vascular/pathology , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
...