Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pathogens ; 11(7)2022 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-35889973

RESUMEN

Bacteria of the genus Pectobacterium are globally occurring pathogens that infect a broad spectrum of plants. The plant cell wall degrading enzymes allow them to cause diseases like soft rot and blackleg. Worldwide trade and exchange of plant material together with the accompanying microorganisms contributed to the rapid spread and consequently the acquisition of new traits by bacteria. The 161 pectinolytic strains were isolated from symptomless vegetables and ornamental plants acquired from Polish and foreign local food markets. All strains except four Dickeya isolates were identified as belonging to the Pectobacterium genus by PCR with species-specific primers and recA gene sequencing. The newly isolated bacteria were assigned to eight species, P. versatile (50 strains), P. carotovorum (33), P. brasiliense (27), P. atrosepticum (19), P. parmentieri (12), P. polaris (11), P. parvum (3) and P. odoriferum (2). ERIC PCR and phenotypic characteristics revealed high heterogeneity among P. carotovorum, P. brasiliense and P. versatile isolates. Moreover, a subset of the newly isolated strains was characterised by high tolerance to changing environmental conditions such as salinity, pH and water availability. These bacteria can effectively macerate the tissues of various plants, including potato, chicory and orchid. Our results indicate that Pectobacterium strains isolated from internationally traded, symptomless vegetables and ornamental plants have high potential for adaptation to adverse environmental conditions and to infect various host plants. These features may contribute to the success of the genus Pectobacterium in spreading between different climatic zones and facilitate the colonisation of different ecological niches.

2.
Front Plant Sci ; 12: 632033, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34177974

RESUMEN

Mycoheterotrophic plants have lost the ability to photosynthesize and obtain essential mineral and organic nutrients from associated soil fungi. Despite involving radical changes in life history traits and ecological requirements, the transition from autotrophy to mycoheterotrophy has occurred independently in many major lineages of land plants, most frequently in Orchidaceae. Yet the molecular mechanisms underlying this shift are still poorly understood. A comparison of the transcriptomes of Epipogium aphyllum and Neottia nidus-avis, two completely mycoheterotrophic orchids, to other autotrophic and mycoheterotrophic orchids showed the unexpected retention of several genes associated with photosynthetic activities. In addition to these selected retentions, the analysis of their expression profiles showed that many orthologs had inverted underground/aboveground expression ratios compared to autotrophic species. Fatty acid and amino acid biosynthesis as well as primary cell wall metabolism were among the pathways most impacted by this expression reprogramming. Our study suggests that the shift in nutritional mode from autotrophy to mycoheterotrophy remodeled the architecture of the plant metabolism but was associated primarily with function losses rather than metabolic innovations.

3.
Mycorrhiza ; 30(1): 51-61, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31965295

RESUMEN

Some mixotrophic plants from temperate forests use the mycorrhizal fungi colonizing their roots as a carbon source to supplement their photosynthesis. These fungi are also mycorrhizal on surrounding trees, from which they transfer carbon to mixotrophic plants. These plants are thus reputed difficult to transplant, even when their protection requires it. Here, we take profit of a successful ex situ pot cultivation over 1 to 3 years of the mixotrophic orchid Epipacis helleborine to investigate its mycorrhizal and nutrition status. Firstly, compared with surrounding autotrophic plants, it did not display the higher N content and higher isotopic (13C and 15N) abundance that normally feature mixotrophic orchids because they incorporate N-, 13C-, and 15N-rich fungal biomass. Second, fungal barcoding by next-generation sequencing revealed that the proportion of ectomycorrhizal fungi (expressed as percentage of the total number of either reads or operational taxonomic units) was unusually low compared with E. helleborine growing in situ: instead, we found a high percentage of rhizoctonias, the usual mycorrhizal partners of autotrophic orchids. Altogether, this supports autotrophic survival. Added to the recently published evidence that plastid genomes of mixotrophic orchids have intact photosynthetic genes, this suggests that at least some of them have abilities for autotrophy. This adds to the ecological plasticity of mixotrophic plants, and may allow some reversion to autotrophy in their evolution.


Asunto(s)
Micorrizas , Orchidaceae , Procesos Autotróficos , Fotosíntesis , Raíces de Plantas , Simbiosis
4.
Genome Biol Evol ; 11(9): 2457-2467, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31396616

RESUMEN

Mixotrophic species use both organic and mineral carbon sources. Some mixotrophic plants combine photosynthesis and a nutrition called mycoheterotrophy, where carbon is obtained from fungi forming mycorrhizal symbiosis with their roots. These species can lose photosynthetic abilities and evolve full mycoheterotrophy. Besides morphological changes, the latter transition is associated with a deep alteration of the plastid genome. Photosynthesis-related genes are lost first, followed by housekeeping genes, eventually resulting in a highly reduced genome. Whether relaxation of selective constraints already occurs for the plastid genome of mixotrophic species, which remain photosynthetic, is unclear. This is partly due to the difficulty of comparing plastid genomes of autotrophic, mixotrophic, and mycoheterotrophic species in a narrow phylogenetic framework. We address this question in the orchid tribe Neottieae, where this large assortment of nutrition types occurs. We sequenced 13 new plastid genomes, including 9 mixotrophic species and covering all 6 Neottieae genera. We investigated selective pressure on plastid genes in each nutrition type and conducted a phylogenetic inference of the group. Surprisingly, photosynthesis-related genes did not experience selection relaxation in mixotrophic species compared with autotrophic relatives. Conversely, we observed evidence for selection intensification for some plastid genes. Photosynthesis is thus still under purifying selection, maybe because of its role in fruit formation and thus reproductive success. Phylogenetic analysis resolved most relationships, but short branches at the base of the tree suggest an evolutionary radiation at the beginning of Neottieae history, which, we hypothesize, may be linked to mixotrophy emergence.


Asunto(s)
Genoma de Plastidios , Orchidaceae/citología , Orchidaceae/genética , Procesos Autotróficos , Evolución Biológica , ADN de Plantas/genética , Procesos Heterotróficos , Orchidaceae/clasificación , Orchidaceae/microbiología , Filogenia , Simbiosis
5.
Mitochondrial DNA B Resour ; 4(2): 2683-2684, 2019 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-33365682

RESUMEN

Here, we report the first complete chloroplast genome of Platanthera chlorantha (Orchidaceae: Orchidoideae). The circular genome with the length of 154,260 bp possesses the typical structure consisting of a large single copy region (LSC) of 83,279 bp and a small single copy region (SSC) of 17,759 bp, separated from each other by two copies of inverted repeats (IRs) of 26,611 bp. The plastome encodes 134 genes, of which 88 were protein-coding, eight encoded ribosomal RNA, and 38 transfer RNAs. The overall GC content was 36.74%. The plastome sequence provided here constitutes a valuable resource for analyzing genetic diversity of the Orchidaceae family.

6.
Mitochondrial DNA B Resour ; 4(2): 2821-2823, 2019 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-33365744

RESUMEN

The complete chloroplast genome of Dactylorhiza majalis (Rchb.) P.F. Hunt et Summerh. (Orchidaceae:Orchidoideae) was assembled and characterized using next-generation sequencing data. The plastome (154,108 bp) possesses the typical circular structure consisting of a large single-copy region (LSC; 83,196 bp), a small single-copy region (SSC; 26,580 bp), and two copies of inverted repeats (17,752 bp each). Its overall GC content is 36.99% and the plastome encodes 134 genes. Reconstruction of phylogenetic relationships using complete plastome sequences of Orchidaceae representatives showed that D. majalis was nested within the Orchidoideae tribe Orchideae. The complete plastome comprises a valuable tool in elucidating taxonomic uncertainties within the genus Dactylorhiza.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...