Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 287(10): 7203-12, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22235128

RESUMEN

The Pasteurella multocida heparosan synthases, PmHS1 and PmHS2, are homologous (∼65% identical) bifunctional glycosyltransferase proteins found in Type D Pasteurella. These unique enzymes are able to generate the glycosaminoglycan heparosan by polymerizing sugars to form repeating disaccharide units from the donor molecules UDP-glucuronic acid (UDP-GlcUA) and UDP-N-acetylglucosamine (UDP-GlcNAc). Although these isozymes both generate heparosan, the catalytic phenotypes of these isozymes are quite different. Specifically, during in vitro synthesis, PmHS2 is better able to generate polysaccharide in the absence of exogenous acceptor (de novo synthesis) than PmHS1. Additionally, each of these enzymes is able to generate polysaccharide using unnatural sugar analogs in vitro, but they exhibit differences in the substitution patterns of the analogs they will employ. A series of chimeric enzymes has been generated consisting of various portions of both of the Pasteurella heparosan synthases in a single polypeptide chain. In vitro radiochemical sugar incorporation assays using these purified chimeric enzymes have shown that most of the constructs are enzymatically active, and some possess novel characteristics including the ability to produce nearly monodisperse polysaccharides with an expanded range of sugar analogs. Comparison of the kinetic properties and the sequences of the wild-type enzymes with the chimeric enzymes has enabled us to identify regions that may be responsible for some aspects of both donor binding specificity and acceptor usage. In combination with previous work, these approaches have enabled us to better understand the structure/function relationship of this unique family of glycosyltransferases.


Asunto(s)
Proteínas Bacterianas/química , Glicosiltransferasas/química , Pasteurella multocida/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Pasteurella multocida/genética , Polisacáridos Bacterianos/biosíntesis , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Relación Estructura-Actividad , Uridina Difosfato Ácido Glucurónico/química , Uridina Difosfato Ácido Glucurónico/genética , Uridina Difosfato Ácido Glucurónico/metabolismo , Uridina Difosfato N-Acetilglucosamina/química , Uridina Difosfato N-Acetilglucosamina/genética , Uridina Difosfato N-Acetilglucosamina/metabolismo
2.
Bioorg Med Chem Lett ; 21(4): 1199-201, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21273069

RESUMEN

6''-Azido-6''-deoxy-UDP-N-acetylglucosamine (UDP-6Az-GlcNAc) is a potential alternate substrate for N-acetylglucosaminyltransferases. This compound could be used to generate various glycoconjugates bearing an azide functionality that could in turn be subjected to further modification using Staudinger ligation or Huisgen cycloaddition. UDP-6Az-GlcNAc is synthesized from α-benzyl-N-acetylglucosaminoside in seven-steps with an overall yield of 6%. It is demonstrated to serve as a substrate donor for the glycosyl transfer reaction catalyzed by the human UDP-GlcNAc:polypeptidyltransferase (OGT) to the acceptor protein nucleoporin 62 (nup62).


Asunto(s)
N-Acetilglucosaminiltransferasas/química , Uridina Difosfato N-Acetilglucosamina/análogos & derivados , Azidas/síntesis química , Azidas/química , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Proteínas de Complejo Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/metabolismo , Especificidad por Sustrato , Uridina Difosfato N-Acetilglucosamina/síntesis química , Uridina Difosfato N-Acetilglucosamina/química
3.
Biochemistry ; 46(20): 6149-55, 2007 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-17455913

RESUMEN

ADP-l-glycero-d-manno-heptose 6-epimerase (HldD or AGME, formerly RfaD) catalyzes the interconversion of ADP-beta-d-glycero-d-manno-heptose (ADP-d,d-Hep) and ADP-beta-l-glycero-d-manno-heptose (ADP-l,d-Hep). The latter compound provides the heptose moiety that is used in lipopolysaccharide biosynthesis by Gram-negative bacteria. Several lines of evidence suggest that the enzyme uses a direct oxidation/reduction mechanism involving a tightly bound NADP+ cofactor. An initial oxidation at C-6'' gives a 6''-keto intermediate, and a subsequent reduction on the opposite face of the carbonyl group generates the epimeric product. The reorientation required for the nonstereoselective reduction could take place within a single active site, or it could involve the release of the intermediate and rebinding in an altered conformation. To distinguish between these possibilities, two isotopically labeled substrates (ADP-d,d-Hep) were prepared that contained 18O and 2H isotopes at C-7'' and C-6'', respectively. A crossover experiment was used to determine whether unlabeled or doubly labeled products were formed upon epimerization of a mixture of the two singly labeled compounds. After an initial epimeric equilibrium was reached, no crossover could be detected, indicating that intermediate release is not intrinsic to the overall mechanism. After extended incubation, however, scrambling of the labels could be detected, indicating that a low background rate of intermediate release does occur. To directly detect the release of the intermediate, the labeled compounds were independently epimerized in the presence of a ketone-trapping reagent, phenylhydrazine. The corresponding phenylhydrazones were identified by mass spectrometry, and the absence of any 2H isotope in the adduct obtained from the deuterated starting compound confirmed that the oxidation had occurred at C-6''.


Asunto(s)
Carbohidrato Epimerasas/química , Carbohidrato Epimerasas/metabolismo , Escherichia coli K12/enzimología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Azúcares de Adenosina Difosfato/química , Azúcares de Adenosina Difosfato/metabolismo , Catálisis , Medición de Intercambio de Deuterio , Hidrógeno/metabolismo , NADP/metabolismo , Isótopos de Oxígeno/metabolismo , Conformación Proteica , Soluciones , Espectrometría de Masa por Ionización de Electrospray , Especificidad por Sustrato
4.
Org Biomol Chem ; 3(9): 1653-8, 2005 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-15858646

RESUMEN

Pyrrolidino pseudo-C-nucleosides are isosteres of natural deoxynucleosides which are protonated at the pyrrolidino ring nitrogen under physiological conditions. As constituents of a triplex forming oligodeoxynucleotide (TFO), the positive charge is expected to stabilise DNA triple helices via electrostatic interactions with the phosphodiester backbone of the target DNA. We describe the synthesis of the pyrrolidino isocytidine pseudonucleoside and the corresponding phosphoramidite building block and its incorporation into TFOs. Such TFOs show substantially increased DNA affinity compared to unmodified oligodeoxynucleotides. The increase in affinity is shown to be due to the positive charge at the pyrrolidino subunit.


Asunto(s)
Citidina/química , Oligodesoxirribonucleótidos/síntesis química , Pirrolidinas/química , Secuencia de Bases , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Oligodesoxirribonucleótidos/química
5.
Nucleosides Nucleotides Nucleic Acids ; 22(10): 1919-25, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14609231

RESUMEN

A novel synthesis of 2'-deoxypseudoisocytidine as well as of its phosphoramidite building block for oligonucleotide synthesis is presented. The synthesis is based on Heck-coupling between N-protected pseudoisocytosine and a silyl protected furanoid glycal. With this procedure the corresponding phosphoramidite building block is obtained in 5 steps and an overall yield of 28%.


Asunto(s)
Desoxicitidina/química , Desoxicitidina/síntesis química , Desoxicitidina/análogos & derivados , Estructura Molecular
6.
Artículo en Inglés | MEDLINE | ID: mdl-14565376

RESUMEN

We synthesized pyrrolidino-C-nucleosides, incorporated them into oligodeoxynucleotides and investigated their pairing properties. The thermal duplex and triplex stabilities were measured. While triplex formation is destabilized in the case of pyrrolidino-pseudo-U and -T, pyrrolidino-pseudo-iso-C leads to an increase of the Tm value for third strand dissociation. Duplexes are destabilized with all pyrrolidino-C-nucleosides.


Asunto(s)
ADN/química , Oligodesoxirribonucleótidos/síntesis química , Pirrolidinas , Uracilo/análogos & derivados , Citosina/análogos & derivados , ADN/síntesis química , Indicadores y Reactivos , Cinética , Oligodesoxirribonucleótidos/química , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA