Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38953218

RESUMEN

The Chemical Assessment of Surfaces and Air (CASA) study aimed to understand how chemicals transform in the indoor environment using perturbations (e.g., cooking, cleaning) or additions of indoor and outdoor pollutants in a well-controlled test house. Chemical additions ranged from individual compounds (e.g., gaseous ammonia or ozone) to more complex mixtures (e.g., a wildfire smoke proxy and a commercial pesticide). Physical perturbations included varying temperature, ventilation rates, and relative humidity. The objectives for CASA included understanding (i) how outdoor air pollution impacts indoor air chemistry, (ii) how wildfire smoke transports and transforms indoors, (iii) how gases and particles interact with building surfaces, and (iv) how indoor environmental conditions impact indoor chemistry. Further, the combined measurements under unperturbed and experimental conditions enable investigation of mitigation strategies following outdoor and indoor air pollution events. A comprehensive suite of instruments measured different chemical components in the gas, particle, and surface phases throughout the study. We provide an overview of the test house, instrumentation, experimental design, and initial observations - including the role of humidity in controlling the air concentrations of many semi-volatile organic compounds, the potential for ozone to generate indoor nitrogen pentoxide (N2O5), the differences in microbial composition between the test house and other occupied buildings, and the complexity of deposited particles and gases on different indoor surfaces.

2.
Sci Adv ; 9(41): eadh8263, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37831770

RESUMEN

Wildfires are increasing in frequency, raising concerns that smoke can permeate indoor environments and expose people to chemical air contaminants. To study smoke transformations in indoor environments and evaluate mitigation strategies, we added smoke to a test house. Many volatile organic compounds (VOCs) persisted days following the smoke injection, providing a longer-term exposure pathway for humans. Two time scales control smoke VOC partitioning: a faster one (1.0 to 5.2 hours) that describes the time to reach equilibrium between adsorption and desorption processes and a slower one (4.8 to 21.2 hours) that describes the time for indoor ventilation to overtake adsorption-desorption equilibria in controlling the air concentration. These rates imply that vapor pressure controls partitioning behavior and that house ventilation plays a minor role in removing smoke VOCs. However, surface cleaning activities (vacuuming, mopping, and dusting) physically removed surface reservoirs and thus reduced indoor smoke VOC concentrations more effectively than portable air cleaners and more persistently than window opening.


Asunto(s)
Contaminación del Aire Interior , Compuestos Orgánicos Volátiles , Humanos , Compuestos Orgánicos Volátiles/análisis , Humo , Monitoreo del Ambiente
3.
Int J Radiat Biol ; 99(2): 308-317, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35709481

RESUMEN

PURPOSE: The purpose of this study was to quantify the microscopic dose distribution surrounding gold nanoparticles (GNPs) irradiated at therapeutic energies and to measure the changes in cell survival in vitro caused by this dose enhancement. METHODS: The dose distributions from secondary electrons surrounding a single gold nanosphere and single gold nanocube of equal volume were both simulated using MCNP6. Dose enhancement factors (DEFs) in the 1 µm3 volume surrounding a GNP were calculated and compared between a nanosphere and nanocube and between 6 and 18 MV energies. This microscopic effect was explored further by experimentally measuring the cell survival of C-33a cervical cancer cells irradiated at 18 MV with varying doses of energy and concentrations of GNPs. Survival of cells receiving no irradiation, a 3 Gy dose, and a 6 Gy dose of 18 MV energy were determined for each concentration of GNPs. RESULTS: It was observed that the dose from electrons surrounding the gold nanocube surpasses that of a gold nanosphere up to a distance of 1.1 µm by 18.5% for the 18 MV energy spectrum and by 23.1% for the 6 MV spectrum. DEFs ranging from ∼2 to 8 were found, with the maximum DEF resulting from the case of the gold nanocube irradiated at 6 MV energy. Experimentally, for irradiation at 18 MV, incubating cells with 6 nM (0.10% gold by mass) GNPs produces an average 6.7% decrease in cell survival, and incubating cells with 9 nM (0.15% gold by mass) GNPs produces an average 14.6% decrease in cell survival, as compared to cells incubated and irradiated without GNPs. CONCLUSION: We have successfully demonstrated the potential radiation dose enhancing effects in vitro and microdosimetrically from gold nanoparticles.


Asunto(s)
Oro , Nanopartículas del Metal , Oro/farmacología , Oro/uso terapéutico , Método de Montecarlo , Electrones
4.
Environ Sci Technol ; 56(23): 16633-16642, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36332100

RESUMEN

The organic composition of coastal sea spray aerosol is important for both atmospheric chemistry and public health but remains poorly characterized. Coastal waters contain an organic material derived from both anthropogenic processes, such as wastewater discharge, and biological processes, including biological blooms. Here, we probe the chemical composition of the organic fraction of sea spray aerosol over the course of the 2019 SeaSCAPE mesocosm experiment, in which a phytoplankton bloom was facilitated in natural coastal water from La Jolla, California. We apply untargeted two-dimensional gas chromatography to characterize submicron nascent sea spray aerosol samples, reporting ∼750 unique organic species traced over a 19 day phytoplankton bloom experiment. Categorization and quantitative compositional analysis reveal three major findings. First, anthropogenic species made up 30% of total submicron nascent sea spray aerosol organic mass under the pre-bloom condition. Second, biological activity drove large changes within the aerosolized carbon pool, decreasing the anthropogenic mass fraction by 89% and increasing the biogenic and biologically transformed fraction by a factor of 5.6. Third, biogenic marine organics are underrepresented in mass spectral databases in comparison to marine organic pollutants, with more than twice as much biogenic aerosol mass attributable to unlisted compounds.


Asunto(s)
Partículas y Gotitas de Aerosol , Fitoplancton , Aerosoles/química , Océanos y Mares
5.
ACS Earth Space Chem ; 6(11): 2732-2744, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36425339

RESUMEN

The effects of atmospheric aging on single-particle nascent sea spray aerosol (nSSA) physicochemical properties, such as morphology, composition, phase state, and water uptake, are important to understanding their impacts on the Earth's climate. The present study investigates these properties by focusing on the aged SSA (size range of 0.1-0.6 µm) and comparing with a similar size range nSSA, both generated at a peak of a phytoplankton bloom during a mesocosm study. The aged SSAs were generated by exposing nSSA to OH radicals with exposures equivalent to 4-5 days of atmospheric aging. Complementary filter-based thermal optical analysis, atomic force microscopy (AFM), and AFM photothermal infrared spectroscopy were utilized. Both nSSA and aged SSA showed an increase in the organic mass fraction with decreasing particle sizes. In addition, aging results in a further increase of the organic mass fraction, which can be attributed to new particle formation and oxidation of volatile organic compounds followed by condensation on pre-existing particles. The results are consistent with single-particle measurements that showed a relative increase in the abundance of aged SSA core-shells with significantly higher organic coating thickness, relative to nSSA. Increased hygroscopicity was observed for aged SSA core-shells, which had more oxygenated organic species. Rounded nSSA and aged SSA had similar hygroscopicity and no apparent changes in the composition. The observed changes in aged SSA physicochemical properties showed a significant size-dependence and particle-to-particle variability. Overall, results showed that the atmospheric aging can significantly influence the nSSA physicochemical properties, thus altering the SSA effects on the climate.

6.
Environ Sci Process Impacts ; 24(10): 1923-1933, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36169554

RESUMEN

Marine chromophoric dissolved organic matter (m-CDOM) mediates many vital photochemical processes at the ocean's surface. Isolating m-CDOM within the chemical complexity of marine dissolved organic matter has remained an analytical challenge. The SeaSCAPE campaign, a large-scale mesocosm experiment, provided a unique opportunity to probe the in situ production of m-CDOM across phytoplankton and microbial blooms. Results from mass spectrometry coupled with UV-VIS spectroscopy reveal production of a chemodiverse set of compounds well-correlated with increases in absorbance after a bacterial bloom, indicative of autochthonous m-CDOM production. Notably, many of the absorbing compounds were found to be enriched in nitrogen, which may be essential to chromophore function. From these results, quinoids, porphyrins, flavones, and amide-like compounds were identified via structural analysis and may serve as important photosensitizers in the marine boundary layer. Overall, this study demonstrates a step forward in identifying and characterizing m-CDOM using temporal mesocosm data and integrated UV-VIS spectroscopy and mass spectrometry analyses.


Asunto(s)
Flavonas , Porfirinas , Materia Orgánica Disuelta , Fármacos Fotosensibilizantes , Nitrógeno , Amidas , Espectrometría de Fluorescencia/métodos
7.
Lasers Surg Med ; 54(5): 702-715, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35170764

RESUMEN

BACKGROUND: Photothermal therapies have shown promise for treating pancreatic ductal adenocarcinoma when they can be applied selectively, but off-target heating can frustrate treatment outcomes. Improved strategies leveraging selective binding and localized heating are possible with precision medical approaches such as functionalized gold nanoparticles, but careful control of optical dosage and thermal generation would be imperative. However, the literature review revealed many groups assume liver properties for pancreas tissue or rely on insufficiently rigorous characterization studies. OBJECTIVE: The objective of this study was to determine the thermal conductivity and optical properties at 808/1064 nm wavelengths in healthy samples of fresh and frozen porcine pancreas ex vivo. METHODS: Thermal conductivity of the porcine pancreas tissue was measured by utilizing a hot plate and two K-type thermocouples. Experimental variables such as tissue sample thickness, hot plate temperature, and heat convection coefficient were estimated through the control experiments utilizing specimens with known thermal conductivity. Optical evaluations assessed light attenuation at the 808 and 1064 nm wavelengths (continuous wave, collimated beam) by measuring the light transmittance and reflectance of different tissue thicknesses. In turn, these measurements were input into an inverse adding-doubling program to estimate the optical absorption and reduced scattering coefficients. RESULTS: Interestingly, pancreas tissue thermal conductivity was demonstrated to have no significant difference (p > 0.5) between samples that were fresh, frozen for 7 days, or frozen for 14 days. Conversely, optical property assessment exhibited a significant difference (p < 0.001) between fresh and frozen tissue samples, with increased absorbance and reflectance within the frozen group. However, the optical attenuation values measured were substantially less than that of the liver or reported in previous pancreas studies, suggesting a wide overestimation of these properties. CONCLUSIONS: These thermal and optical properties are critical to the development of novel therapeutic strategies like plasmonic photothermal therapy, but perhaps more importantly, are invaluable towards informing better surgical planning and operative technique among the existing thermal approaches for treating pancreas tissue.


Asunto(s)
Oro , Nanopartículas del Metal , Animales , Calor , Páncreas/diagnóstico por imagen , Porcinos , Conductividad Térmica
8.
Environ Sci Process Impacts ; 24(2): 290-315, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35048927

RESUMEN

Marine aerosols strongly influence climate through their interactions with solar radiation and clouds. However, significant questions remain regarding the influences of biological activity and seawater chemistry on the flux, chemical composition, and climate-relevant properties of marine aerosols and gases. Wave channels, a traditional tool of physical oceanography, have been adapted for large-scale ocean-atmosphere mesocosm experiments in the laboratory. These experiments enable the study of aerosols under controlled conditions which isolate the marine system from atmospheric anthropogenic and terrestrial influences. Here, we present an overview of the 2019 Sea Spray Chemistry and Particle Evolution (SeaSCAPE) study, which was conducted in an 11 800 L wave channel which was modified to facilitate atmospheric measurements. The SeaSCAPE campaign sought to determine the influence of biological activity in seawater on the production of primary sea spray aerosols, volatile organic compounds (VOCs), and secondary marine aerosols. Notably, the SeaSCAPE experiment also focused on understanding how photooxidative aging processes transform the composition of marine aerosols. In addition to a broad range of aerosol, gas, and seawater measurements, we present key results which highlight the experimental capabilities during the campaign, including the phytoplankton bloom dynamics, VOC production, and the effects of photochemical aging on aerosol production, morphology, and chemical composition. Additionally, we discuss the modifications made to the wave channel to improve aerosol production and reduce background contamination, as well as subsequent characterization experiments. The SeaSCAPE experiment provides unique insight into the connections between marine biology, atmospheric chemistry, and climate-relevant aerosol properties, and demonstrates how an ocean-atmosphere-interaction facility can be used to isolate and study reactions in the marine atmosphere in the laboratory under more controlled conditions.


Asunto(s)
Atmósfera , Agua de Mar , Aerosoles/química , Atmósfera/química , Océanos y Mares , Fitoplancton , Agua de Mar/química
9.
Mol Biol Rep ; 49(1): 783-788, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34724128

RESUMEN

BACKGROUND: Solitary bees, such as the red mason bee (Osmia bicornis), provide important ecosystem services including pollination. In the face of global declines of pollinator abundance, such haplodiploid Hymenopterans have a compounded extinction risk due to the potential for limited genetic diversity. In order to assess the genetic diversity of Osmia bicornis populations, we developed microsatellite markers and characterised them in two populations. METHODS AND RESULTS: Microsatellite sequences were mined from the recently published Osmia bicornis genome, which was assembled from DNA extracted from a single male bee originating from the United Kingdom. Sequences were identified that contained dinucleotide, trinucleotide, and tetranucleotide repeat regions. Seventeen polymorphic microsatellite markers were designed and tested, sixteen of which were developed into four multiplex PCR sets to facilitate cheap, fast and efficient genotyping and were characterised in unrelated females from Germany (n = 19) and England (n = 14). CONCLUSIONS: The microsatellite markers are highly informative, with a combined exclusion probability of 0.997 (first parent), which will enable studies of genetic structure and diversity to inform conservation efforts in this bee.


Asunto(s)
Abejas/genética , Genoma de los Insectos , Repeticiones de Microsatélite/genética , Polimorfismo Genético , Alelos , Animales , Ecosistema , Femenino , Frecuencia de los Genes , Sitios Genéticos , Genotipo , Técnicas de Genotipaje/métodos , Alemania , Masculino , Reino Unido
10.
Pharmaceutics ; 13(12)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34959414

RESUMEN

Plasmonic photothermal therapy (PPTT) has potential as a superior treatment method for pancreatic cancer, a disease with high mortality partially attributable to the currently non-selective treatment options. PPTT utilizes gold nanoparticles infused into a targeted tissue volume and exposed to a specific light wavelength to induce selective hyperthermia. The current study focuses on developing this approach within an ex vivo porcine pancreas model via an innovative fiberoptic microneedle device (FMD) for co-delivering light and gold nanoparticles. The effects of laser wavelengths (808 vs. 1064 nm), irradiances (20-50 mW·mm-2), and gold nanorod (GNR) concentrations (0.1-3 nM) on tissue temperature profiles were evaluated to assess and control hyperthermic generation. The GNRs had a peak absorbance at ~800 nm. Results showed that, at 808 nm, photon absorption and subsequent heat generation within tissue without GNRs was 65% less than 1064 nm. The combination of GNRs and 808 nm resulted in a 200% higher temperature rise than the 1064 nm under similar conditions. A computational model was developed to predict the temperature shift and was validated against experimental results with a deviation of <5%. These results show promise for both a predictive model and spatially selective, tunable treatment modality for pancreatic cancer.

11.
Environ Sci Technol ; 55(23): 15705-15714, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34787411

RESUMEN

Organic emissions from coastal waters play an important but poorly understood role in atmospheric chemistry in coastal regions. A mesocosm experiment focusing on facilitated biological blooms in coastal seawater, SeaSCAPE (Sea Spray Chemistry and Particle Evolution), was performed to study emission of volatile gases, primary sea spray aerosol, and formation of secondary marine aerosol as a function of ocean biological and chemical processes. Here, we report observations of aerosol-phase benzothiazoles in a marine atmospheric context with complementary measurements of dissolved-phase benzothiazoles. Though previously reported dissolved in polluted coastal waters, we report the first direct evidence of the transfer of these molecules from seawater into the atmosphere. We also report the first gas-phase observations of benzothiazole in the environment absent a direct industrial, urban, or rubber-based source. From the identities and temporal dynamics of the dissolved and aerosol species, we conclude that the presence of benzothiazoles in the coastal water (and thereby their emissions into the atmosphere) is primarily attributable to anthropogenic sources. Oxidation experiments to explore the atmospheric fate of gas-phase benzothiazole show that it produces secondary aerosol and gas-phase SO2, making it a potential contributor to secondary marine aerosol formation in coastal regions and a participant in atmospheric sulfur chemistry.


Asunto(s)
Partículas y Gotitas de Aerosol , Atmósfera , Aerosoles , Atmósfera/análisis , Benzotiazoles , Humanos , Agua de Mar
12.
Appl Radiat Isot ; 171: 109638, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33631502

RESUMEN

Dose enhancement due to gold nanoparticles (GNPs) has been quantified experimentally and through Monte Carlo simulations for external beam radiation therapy energies of 6 and 18 MV. The highest enhancement was observed for the 18 MV beam at the highest GNP concentration tested, amounting to a DEF of 1.02. DEF is shown to increase with increasing concentration of gold and increasing energy in the megavoltage energy range. The largest difference in measured vs. simulated DEF across all data sets was 0.3%, showing good agreement.

13.
Nanotechnology ; 32(22)2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33607639

RESUMEN

Gold bipyramid (GBP) nanoparticles are promising for a range of biomedical applications, including biosensing and surface-enhanced Raman spectroscopy, due to their favorable optical properties and ease of chemical functionalization. Here we report improved synthesis methods, including preparation of gold seed particles with an increased shelf life of ∼1 month, and preparation of GBPs with significantly shortened synthesis time (< 1 h). We also report methods for the functionalization and bioconjugation of the GBPs, including functionalization with alkanethiol self-assembled monolayers (SAMs) and bioconjugation with proteins via carbodiimide cross-linking. Binding of specific antibodies to the nanoparticle-bound proteins was subsequently observed via localized surface plasmon resonance sensing. Rabbit IgG and goat anti-Rabbit IgG antibodies were used as a model system for antibody-antigen interactions. As-synthesized, SAM-functionalized, and bioconjugated bipyramids were characterized using scanning electron microscopy, UV-vis spectroscopy, zeta potential, and dynamic light scattering.

14.
J Phys Chem B ; 125(8): 2031-2041, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33617719

RESUMEN

Surface-enhanced Raman scattering (SERS) spectra contain information on the chemical structure on nanoparticle surfaces through the position and alignment of molecules with the electromagnetic near field. Time-dependent density functional theory (TDDFT) can provide the Raman tensors needed for a detailed interpretation of SERS spectra. Here, the impact of molecular conformations on SERS spectra is considered. TDDFT calculations of the surfactant cetyltrimethylammonium bromide with five conformers produced more accurate unenhanced Raman spectra than a simple all-trans structure. The calculations and measurements also demonstrated a loss of structural information in the CH2/CH3 scissor vibration band at 1450 cm-1 in the SERS spectra. To study lipid bilayers, TDDFT calculations on conformers of methyl phosphorylcholine and cis-5-decene served as models for the symmetric choline stretch in the lipid headgroup and the C═C stretch in the acyl chains of 1,2-oleoyl-glycero-3-phosphocholine. Conformer considerations enabled a measurement of the distribution of double-bond orientations with an order parameter of SC═C = 0.53.


Asunto(s)
Membrana Dobles de Lípidos , Espectrometría Raman , Conformación Molecular , Vibración
15.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33376210

RESUMEN

Aerosols impact climate, human health, and the chemistry of the atmosphere, and aerosol pH plays a major role in the physicochemical properties of the aerosol. However, there remains uncertainty as to whether aerosols are acidic, neutral, or basic. In this research, we show that the pH of freshly emitted (nascent) sea spray aerosols is significantly lower than that of sea water (approximately four pH units, with pH being a log scale value) and that smaller aerosol particles below 1 µm in diameter have pH values that are even lower. These measurements of nascent sea spray aerosol pH, performed in a unique ocean-atmosphere facility, provide convincing data to show that acidification occurs "across the interface" within minutes, when aerosols formed from ocean surface waters become airborne. We also show there is a correlation between aerosol acidity and dissolved carbon dioxide but no correlation with marine biology within the seawater. We discuss the mechanisms and contributing factors to this acidity and its implications on atmospheric chemistry.


Asunto(s)
Aerosoles/química , Agua de Mar/química , Aire , Atmósfera/química , Ambiente , Humanos , Concentración de Iones de Hidrógeno , Océanos y Mares , Fitoplancton , Agua de Mar/análisis
16.
ACS Cent Sci ; 6(12): 2259-2266, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33376786

RESUMEN

Marine aerosols play a critical role in impacting our climate by seeding clouds over the oceans. Despite decades of research, key questions remain regarding how ocean biological activity changes the composition and cloud-forming ability of marine aerosols. This uncertainty largely stems from an inability to independently determine the cloud-forming potential of primary versus secondary marine aerosols in complex marine environments. Here, we present results from a unique 6-day mesocosm experiment where we isolated and studied the cloud-forming potential of primary and secondary marine aerosols over the course of a phytoplankton bloom. The results from this controlled laboratory approach can finally explain the long-observed changes in the hygroscopic properties of marine aerosols observed in previous field studies. We find that secondary marine aerosols, consisting of sulfate, ammonium, and organic species, correlate with phytoplankton biomass (i.e., chlorophyll-a concentrations), whereas primary sea spray aerosol does not. Importantly, the measured CCN activity (κapp = 0.59 ± 0.04) of the resulting secondary marine aerosol matches the values observed in previous field studies, suggesting secondary marine aerosols play the dominant role in affecting marine cloud properties. Given these findings, future studies must address the physical, chemical, and biological factors controlling the emissions of volatile organic compounds that form secondary marine aerosol, with the goal of improving model predictions of ocean biology on atmospheric chemistry, clouds, and climate.

17.
Acc Chem Res ; 53(11): 2510-2520, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33086794

RESUMEN

Ocean-atmosphere interactions control the composition of the atmosphere, hydrological cycle, and temperature of our planet and affect human and ecosystem health. Our understanding of the impact of ocean emissions on atmospheric chemistry and climate is limited relative to terrestrial systems, despite the fact that oceans cover the majority (71%) of the Earth. As a result, the impact of marine aerosols on clouds represents one of the largest uncertainties in our understanding of climate, which is limiting our ability to accurately predict the future temperatures of our planet. The emission of gases and particles from the ocean surface constitutes an important chemical link between the ocean and atmosphere and is mediated by marine biological, physical, and chemical processes. It is challenging to isolate the role of biological ocean processes on atmospheric chemistry in the real world, which contains a mixture of terrestrial and anthropogenic emissions. One decade ago, the NSF Center for Aerosol Impacts on Chemistry of the Environment (CAICE) took a unique ocean-in-the-laboratory approach to study the factors controlling the chemical composition of marine aerosols and their effects on clouds and climate. CAICE studies have demonstrated that the complex interplay of phytoplankton, bacteria, and viruses exerts significant control over sea spray aerosol composition and the production of volatile organic compounds. In addition, CAICE experiments have explored the physical production mechanisms and their impact on the properties of marine cloud condensation nuclei and ice nucleating particles, thus shedding light on connections between the oceans and cloud formation. As these ocean-in-the-laboratory experiments become more sophisticated, they allow for further exploration of the complexity of the processes that control atmospheric emissions from the ocean, as well as incorporating the effects of atmospheric aging and secondary oxidation processes. In the face of unprecedented global climate change, these results provide key insights into how our oceans and atmosphere are responding to human-induced changes to our planet.This Account presents results from a decade of research by chemists in the NSF Center for Aerosol Impacts on Chemistry of the Environment. The mission of CAICE involves taking a multidisciplinary approach to transform the ability to accurately predict the impact of marine aerosols on our environment by bringing the full real-world chemical complexity of the ocean and atmosphere into the laboratory. Toward this end, CAICE has successfully advanced the study of the ocean-atmosphere system under controlled laboratory settings through the stepwise simulation of physical production mechanisms and incorporation of marine microorganisms, building to systems that replicate real-world chemical complexity. This powerful approach has already made substantial progress in advancing our understanding of how ocean biology and physical processes affect the composition of nascent sea spray aerosol (SSA), as well as yielded insights that help explain longstanding discrepancies in field observations in the marine environment. CAICE research is now using laboratory studies to assess how real-world complexity, such as warming temperatures, ocean acidification, wind speed, biology, and anthropogenic perturbations, impacts the evolution of sea spray aerosol properties, as well as shapes the composition of the marine atmosphere.

18.
Phys Med Biol ; 65(13): 135007, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32434159

RESUMEN

Gold nanoparticles (GNPs) have been studied extensively as promising radiation dose enhancing agents. In the current study, the dose enhancement effect of GNPs for Ir-192 HDR brachytherapy is studied using Monte Carlo N-Particle code, version 6.2 (MCNP6.2) and compared with experimental results obtained using Burlin cavity theory formalism. The Ir-192 source is verified using TG-43 parameters and dose enhancement factors (DEFs) from GNPs are simulated for three different mass percentages of gold in the GNP solution. These results are compared to DEFs previously reported experimentally by our group (Bassiri et al 2019 Med. Phys.) for a GNP-containing volume in an apparatus designed in-house to measure dose enhancement with GNPs for high dose rate (HDR) Ir-192 brachytherapy. An HDR Ir-192 Microselectron v2 r HDR brachytherapy source was modeled using MCNP6.2 using the TG-43 formalism in water. Anisotropy and radial dose function were verified against known values. An apparatus designed to measure dose enhancement to a 0.75 cm3 volume of GNPs from an Ir-192 brachytherapy seed with average energy of 0.38 MeV was built in-house and modeled using MCNP6.2. Burlin cavity correction factors were applied to experimental measurements. The macroscopic DEF was calculated for GNPs of size 30 nm at mass percentages of gold of 0.28%, 0.56% and 0.77%, using the repeating structures capability of MCNP6.2. DEF was calculated by dividing dose to the GNP solution by dose to water in the same volume. The radial dose function and anisotropy factor values at varying angles and distances were accurate when compared against known values. DEFs of 1.018 ± 0.003, 1.031 ± 0.003, and 1.041 ± 0.003 for GNP solutions containing mass percent of gold of 0.28%, 0.56% and 0.77%, respectively, were computed. These DEFs were within 2% of experimental values with Burlin cavity correction factors applied for all three mass percentages of gold.


Asunto(s)
Braquiterapia/métodos , Oro/química , Radioisótopos de Iridio/uso terapéutico , Nanopartículas del Metal , Método de Montecarlo , Dosis de Radiación , Anisotropía , Humanos , Dosificación Radioterapéutica , Agua
19.
Med Phys ; 47(1): 260-266, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31660622

RESUMEN

PURPOSE: The purpose of this work is to introduce a simple yet accurate technique to measure the dose enhancement factor (DEF) of a citrate-capped gold nanoparticle (GNP) solution using EBT3 film in an 192 Ir setup. METHODS: Dose enhancement factor is the ratio of absorbed dose in a solution compared to absorbed dose in water, assuming identical irradiation parameters. Citrate-capped GNPs were synthesized. An acrylic apparatus was constructed such that the EBT3 film was placed in charged particle equilibrium within the GNP solution with 0.28%, 0.56%, and 0.77% gold by mass. Sets of 12 dose measurements were collected for each GNP concentration as well as for water. The expected value of DEF was also calculated with the effective mass absorption coefficient of the GNP solution and water for an 192 Ir spectrum. Furthermore, Burlin cavity correction factors were calculated and experimentally verified. Experimental verification of the cavity correction was performed by measuring DEF using stacks of 1, 3, and 5 sheets of film and extrapolating the DEF to 0 sheets of film. RESULTS: Experimental cavity corrections agreed with those calculated with the Burlin cavity formalism. The calculated DEF was 1.013, 1.027, and 1.037 for the 0.28%, 0.56%, and 0.77% gold by mass GNP solutions, respectively. The corresponding uncorrected DEF measurement values were 1.013 ± 0.006, 1.024 ± 0.010, and 1.032 ± 0.006, respectively. When applying the Burlin cavity formalism, the final corrected DEF measurement values were 1.016 ± 0.006, 1.029 ± 0.010, and 1.039 ± 0.006, respectively. CONCLUSIONS: The experimental cavity correction results agreed with the theoretical Burlin calculations, which allowed for the Burlin corrections to be performed for all GNP concentrations and measured DEF values. The adjusted DEF values agreed with the theoretical calculations. Thus, these results indicate that a Burlin cavity calculation can be applied to correct film-based DEF measurements for 192 Ir.


Asunto(s)
Dosimetría por Película , Oro/química , Nanopartículas del Metal , Ácido Cítrico/química
20.
Appl Radiat Isot ; 155: 108925, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31757713

RESUMEN

Monte Carlo N-Particle 6 (MCNP6) is the latest version of Los Alamos National Laboratory's powerful Monte Carlo software designed to compute general photon, neutron, and electron transport using stochastic algorithms. Here we provide a case study of modeling the photon beam of a Varian 600C Clinical Linear Accelerator (linac), which is used to deliver radiation therapy, along with a comparison to experimentally measured beam characteristics. The source definition parameters in MCNP6, including the energy spectrum and angular spectrum of the photons, secondary and tertiary collimators, and a water phantom that tallied dose delivered at different points along the phantom are included. The experimental data for comparison was in the form of a percent depth dose curve as well as crossline and inline beam profiles. Experimental depth dose curve and beam profiles were acquired using a standard 0.125 cc ion chamber within a water phantom. In the computational model, the simulated depth dose curve was computed by tallying the total energy deposited in a stack of vertical slices down the depth of the phantom for percent depth dose curves. The simulated beam profiles were computed in a similar fashion, by tallying the energy deposited in a horizontal row, both in the x- and y-directions of cubic cells located at various depths. For the percent depth dose curve, a mean absolute percentage difference of 1.02%, 1.07%, and 1.94% were calculated for field sizes of 5 × 5 cm2, 10 × 10 cm2 and 20 × 20 cm2, respectively, between the model and experimental measurements were calculated. We present our model as an example to guide other MCNP6 users in the medical physics community to create similar beam models for biomedical dose estimation and research calculations for predicting dose to newly developed phantoms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA