Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 1491, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36707549

RESUMEN

Despite numerous prior attempts to improve knock-in (KI) efficiency, the introduction of precise base pair substitutions by the CRISPR-Cas9 technique in zebrafish remains challenging. In our efforts to generate KI zebrafish models of human CACNA1C mutations, we have tested the effect of several CRISPR determinants on KI efficiency across two sites in a single gene and developed a novel method for early selection to ameliorate KI efficiency. We identified optimal KI conditions for Cas9 protein and non-target asymmetric PAM-distal single stranded deoxynucleotide repair templates at both cacna1c sites. An effect of distance to the cut site on the KI efficiency was only observed for a single repair template conformation at one of the two sites. By combining minimally invasive early genotyping with the zebrafish embryo genotyper (ZEG) device and next-generation sequencing, we were able to obtain an almost 17-fold increase in somatic editing efficiency. The added benefit of the early selection procedure was particularly evident for alleles with lower somatic editing efficiencies. We further explored the potential of the ZEG selection procedure for the improvement of germline transmission by demonstrating germline transmission events in three groups of pre-selected embryos.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Animales , Humanos , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Pez Cebra/genética , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento
2.
Biophys J ; 118(10): 2612-2620, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32365329

RESUMEN

Voltage-gated potassium (Kv) channels display several types of inactivation processes, including N-, C-, and U-types. C-type inactivation is attributed to a nonconductive conformation of the selectivity filter (SF). It has been proposed that the activation gate and the channel's SF are allosterically coupled because the conformational changes of the former affect the structure of the latter and vice versa. The second threonine of the SF signature sequence (e.g., TTVGYG) has been proven to be essential for this allosteric coupling. To further study the role of the SF in U-type inactivation, we substituted the second threonine of the TTVGYG sequence by an alanine in the hKv2.1 and hKv3.1 channels, which are known to display U-type inactivation. Both hKv2.1-T377A and hKv3.1-T400A yielded channels that were resistant to inactivation, and as a result, they displayed noninactivating currents upon channel opening; i.e., hKv2.1-T377A and hKv3.1-T400A remained fully conductive upon prolonged moderate depolarizations, whereas in wild-type hKv2.1 and hKv3.1, the current amplitude typically reduces because of U-type inactivation. Interestingly, increasing the extracellular K+ concentration increased the macroscopic current amplitude of both hKv2.1-T377A and hKv3.1-T400A, which is similar to the response of the homologous T to A mutation in Shaker and hKv1.5 channels that display C-type inactivation. Our data support an important role for the second threonine of the SF signature sequence in the U-type inactivation gating of hKv2.1 and hKv3.1.


Asunto(s)
Canales de Potasio con Entrada de Voltaje , Canales de Potasio , Activación del Canal Iónico , Potasio/metabolismo , Bloqueadores de los Canales de Potasio , Canales de Potasio/metabolismo
3.
PLoS One ; 9(6): e98960, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24901643

RESUMEN

The "silent" voltage-gated potassium (KvS) channel subunit Kv6.4 does not form electrically functional homotetramers at the plasma membrane but assembles with Kv2.1 subunits, generating functional Kv2.1/Kv6.4 heterotetramers. The N-terminal T1 domain determines the subfamily-specific assembly of Kv1-4 subunits by preventing interactions between subunits that belong to different subfamilies. For Kv6.4, yeast-two-hybrid experiments showed an interaction of the Kv6.4 N-terminus with the Kv2.1 N-terminus, but unexpectedly also with the Kv3.1 N-terminus. We confirmed this interaction by Fluorescence Resonance Energy Transfer (FRET) and co-immunoprecipitation (co-IP) using N-terminal Kv3.1 and Kv6.4 fragments. However, full-length Kv3.1 and Kv6.4 subunits do not form heterotetramers at the plasma membrane. Therefore, additional interactions between the Kv6.4 and Kv2.1 subunits should be important in the Kv2.1/Kv6.4 subfamily-specificity. Using FRET and co-IP approaches with N- and C-terminal fragments we observed that the Kv6.4 C-terminus physically interacts with the Kv2.1 N-terminus but not with the Kv3.1 N-terminus. The N-terminal amino acid sequence CDD which is conserved between Kv2 and KvS subunits appeared to be a key determinant since charge reversals with arginine substitutions abolished the interaction between the N-terminus of Kv2.1 and the C-terminus of both Kv2.1 and Kv6.4. In addition, the Kv6.4(CKv3.1) chimera in which the C-terminus of Kv6.4 was replaced by the corresponding domain of Kv3.1, disrupted the assembly with Kv2.1. These results indicate that the subfamily-specific Kv2.1/Kv6.4 heterotetramerization is determined by interactions between Kv2.1 and Kv6.4 that involve both the N- and C-termini in which the conserved N-terminal CDD sequence plays a key role.


Asunto(s)
Canales de Potasio Shab/metabolismo , Secuencia de Aminoácidos , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Humanos , Inmunoprecipitación , Mutagénesis , Técnicas de Placa-Clamp , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Canales de Potasio Shab/química , Canales de Potasio Shab/genética
4.
J Biol Chem ; 286(1): 717-25, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21059661

RESUMEN

In vivo, KCNQ1 α-subunits associate with the ß-subunit KCNE1 to generate the slowly activating cardiac potassium current (I(Ks)). Structurally, they share their topology with other Kv channels and consist out of six transmembrane helices (S1-S6) with the S1-S4 segments forming the voltage-sensing domain (VSD). The opening or closure of the intracellular channel gate, which localizes at the bottom of the S6 segment, is directly controlled by the movement of the VSD via an electromechanical coupling. In other Kv channels, this electromechanical coupling is realized by an interaction between the S4-S5 linker (S4S5(L)) and the C-terminal end of S6 (S6(T)). Previously we reported that substitutions for Leu(353) in S6(T) resulted in channels that failed to close completely. Closure could be incomplete because Leu(353) itself is the pore-occluding residue of the channel gate or because of a distorted electromechanical coupling. To resolve this and to address the role of S4S5(L) in KCNQ1 channel gating, we performed an alanine/tryptophan substitution scan of S4S5(L). The residues with a "high impact" on channel gating (when mutated) clustered on one side of the S4S5(L) α-helix. Hence, this side of S4S5(L) most likely contributes to the electromechanical coupling and finds its residue counterparts in S6(T). Accordingly, substitutions for Val(254) resulted in channels that were partially constitutively open and the ability to close completely was rescued by combination with substitutions for Leu(353) in S6(T). Double mutant cycle analysis supported this cross-talk indicating that both residues come in close contact and stabilize the closed state of the channel.


Asunto(s)
Activación del Canal Iónico , Canal de Potasio KCNQ1/química , Canal de Potasio KCNQ1/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Humanos , Canal de Potasio KCNQ1/genética , Modelos Moleculares , Mutagénesis , Mutación , Conformación Proteica
5.
J Biol Chem ; 284(46): 31625-34, 2009 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-19717558

RESUMEN

Voltage-gated potassium (Kv) channels are transmembrane tetramers of individual alpha-subunits. Eight different Shaker-related Kv subfamilies have been identified in which the tetramerization domain T1, located on the intracellular N terminus, facilitates and controls the assembly of both homo- and heterotetrameric channels. Only the Kv2 alpha-subunits are able to form heterotetramers with members of the silent Kv subfamilies (Kv5, Kv6, Kv8, and Kv9). The T1 domain contains two subdomains, A and B box, which presumably determine subfamily specificity by preventing incompatible subunits to assemble. In contrast, little is known about the involvement of the A/B linker sequence. Both Kv2 and silent Kv subfamilies contain a fully conserved and negatively charged sequence (CDD) in this linker that is lacking in the other subfamilies. Neutralizing these aspartates in Kv2.1 by mutating them to alanines did not affect the gating properties, but reduced the current density moderately. However, charge reversal arginine substitutions strongly reduced the current density of these homotetrameric mutant Kv2.1 channels and immunocytochemistry confirmed the reduced expression at the plasma membrane. Förster resonance energy transfer measurements using confocal microscopy showed that the latter was not due to impaired trafficking, but to a failure to assemble the tetramer. This was further confirmed with co-immunoprecipitation experiments. The corresponding arginine substitution in Kv6.4 prevented its heterotetrameric interaction with Kv2.1. These results indicate that these aspartates (especially the first one) in the A/B box linker of the T1 domain are required for efficient assembly of both homotetrameric Kv2.1 and heterotetrameric Kv2.1/silent Kv6.4 channels.


Asunto(s)
Riñón/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Canales de Potasio Shab/metabolismo , Secuencia de Aminoácidos , Animales , Células Cultivadas , Secuencia Conservada , Electrofisiología , Transferencia Resonante de Energía de Fluorescencia , Técnica del Anticuerpo Fluorescente , Humanos , Inmunoprecipitación , Riñón/citología , Ratones , Datos de Secuencia Molecular , Canales de Potasio con Entrada de Voltaje/genética , Multimerización de Proteína , Subunidades de Proteína , Homología de Secuencia de Aminoácido , Canales de Potasio Shab/genética
6.
Mol Cell Neurosci ; 24(2): 357-66, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14572458

RESUMEN

The beta-subunits of the KChIP family modulate properties and expression level of Kv4 channels. We report the cloning of the first splice variant of KChIP1 (KChIP1b) which contains an extra exon, rich in aromatic residues, in the amino terminus. Both splice variants interacted equally well with Kv4.2 subunits based on confocal imaging and upregulation of current density (more than five-fold). No effects on the voltage dependence of activation or inactivation were noted. However, the effects on the kinetics of recovery from inactivation were opposite: KChIP1b induced a slow component in the recovery (tau approximately 1.2 s), in contrast to the increased recovery rate (tau = 125 ms) with KChIP1a. Accordingly, frequency-dependent accumulation of inactivation was enhanced by KChIP1b but reduced by KChIP1a. Since Kv4.2 channels are involved in protection against back propagating action potentials in dendritic spines, a differential expression of either splice variant could shape the dendritic function.


Asunto(s)
Empalme Alternativo/fisiología , Proteínas de Unión al Calcio/biosíntesis , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas de Unión al Calcio/genética , Variación Genética/fisiología , Humanos , Proteínas de Interacción con los Canales Kv , Ratones , Datos de Secuencia Molecular , Canales de Potasio/biosíntesis , Canales de Potasio/genética , Canales de Potasio/fisiología , Canales de Potasio Shal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA