Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Lancet Neurol ; 22(8): 672-684, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37479373

RESUMEN

BACKGROUND: Spinal cord injury (SCI) causes neural disconnection and persistent neurological deficits, so axon sprouting and plasticity might promote recovery. Soluble Nogo-Receptor-Fc decoy (AXER-204) blocks inhibitors of axon growth and promotes recovery of motor function after SCI in animals. This first-in-human and randomised trial sought to determine primarily the safety and pharmacokinetics of AXER-204 in individuals with chronic SCI, and secondarily its effect on recovery. METHODS: We conducted a two-part study in adults (aged 18-65 years) with chronic (>1 year) cervical traumatic SCI at six rehabilitation centres in the USA. In part 1, AXER-204 was delivered open label as single intrathecal doses of 3 mg, 30 mg, 90 mg, or 200 mg, with primary outcomes of safety and pharmacokinetics. Part 2 was a randomised, parallel, double-blind comparison of six intrathecal doses of 200 mg AXER-204 over 104 days versus placebo. Participants were randomly allocated (1:1) by investigators using a central electronic system, stratified in blocks of four by American Spinal Injury Association Impairment Scale grade and receipt of AXER-204 in part 1. All investigators and patients were masked to treatment allocation until at least day 169. The part 2 primary objectives were safety and pharmacokinetics, with a key secondary objective to assess change in International Standards for Neurological Classification of SCI (ISNCSCI) Upper Extremity Motor Score (UEMS) at day 169 for all enrolled participants. This trial is registered with ClinicalTrials.gov, NCT03989440, and is completed. FINDINGS: We treated 24 participants in part 1 (six per dose; 18 men, six women), and 27 participants in part 2 (13 placebo, 14 AXER-204; 23 men, four women), between June 20, 2019, and June 21, 2022. There were no deaths and no discontinuations from the study due to an adverse event in part 1 and 2. In part 2, treatment-related adverse events were of similar incidence in AXER-204 and placebo groups (ten [71%] vs nine [69%]). Headache was the most common treatment-related adverse event (five [21%] in part 1, 11 [41%] in part 2). In part 1, AXER-204 reached mean maximal CSF concentration 1 day after dosing with 200 mg of 412 000 ng/mL (SD 129 000), exceeding those concentrations that were efficacious in animal studies. In part 2, mean changes from baseline to day 169 in ISNCSCI UEMS were 1·5 (SD 3·3) for AXER-204 and 0·9 (2·3) for placebo (mean difference 0·54, 95% CI -1·48 to 2·55; p=0·59). INTERPRETATION: This study delivers the first, to our knowledge, clinical trial of a rationally designed pharmacological treatment intended to promote neural repair in chronic SCI. AXER-204 appeared safe and reached target CSF concentrations; exploratory biomarker results were consistent with target engagement and synaptic stabilisation. Post-hoc subgroup analyses suggest that future trials could investigate efficacy in patients with moderately severe SCI without prior AXER-204 exposure. FUNDING: Wings for Life Foundation, National Institute of Neurological Disorders and Stroke, National Center for Advancing Translational Sciences, National Institute on Drug Abuse, and ReNetX Bio.


Asunto(s)
Médula Cervical , Traumatismos de la Médula Espinal , Adulto , Masculino , Humanos , Femenino , Resultado del Tratamiento , Traumatismos de la Médula Espinal/tratamiento farmacológico , Método Doble Ciego
2.
Brain ; 143(6): 1697-1713, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32375169

RESUMEN

After CNS trauma such as spinal cord injury, the ability of surviving neural elements to sprout axons, reorganize neural networks and support recovery of function is severely restricted, contributing to chronic neurological deficits. Among limitations on neural recovery are myelin-associated inhibitors functioning as ligands for neuronal Nogo receptor 1 (NgR1). A soluble decoy (NgR1-Fc, AXER-204) blocks these ligands and provides a means to promote recovery of function in multiple preclinical rodent models of spinal cord injury. However, the safety and efficacy of this reagent in non-human primate spinal cord injury and its toxicological profile have not been described. Here, we provide evidence that chronic intrathecal and intravenous administration of NgR1-Fc to cynomolgus monkey and to rat are without evident toxicity at doses of 20 mg and greater every other day (≥2.0 mg/kg/day), and far greater than the projected human dose. Adult female African green monkeys underwent right C5/6 lateral hemisection with evidence of persistent disuse of the right forelimb during feeding and right hindlimb during locomotion. At 1 month post-injury, the animals were randomized to treatment with vehicle (n = 6) or 0.10-0.17 mg/kg/day of NgR1-Fc (n = 8) delivered via intrathecal lumbar catheter and osmotic minipump for 4 months. One animal was removed from the study because of surgical complications of the catheter, but no treatment-related adverse events were noted in either group. Animal behaviour was evaluated at 6-7 months post-injury, i.e. 1-2 months after treatment cessation. The use of the impaired forelimb during spontaneous feeding and the impaired hindlimb during locomotion were both significantly greater in the treatment group. Tissue collected at 7-12 months post-injury showed no significant differences in lesion size, fibrotic scar, gliosis or neuroinflammation between groups. Serotoninergic raphespinal fibres below the lesion showed no deficit, with equal density on the lesioned and intact side below the level of the injury in both groups. Corticospinal axons traced from biotin-dextran-amine injections in the left motor cortex were equally labelled across groups and reduced caudal to the injury. The NgR1-Fc group tissue exhibited a significant 2-3-fold increased corticospinal axon density in the cervical cord below the level of the injury relative to the vehicle group. The data show that NgR1-Fc does not have preclinical toxicological issues in healthy animals or safety concerns in spinal cord injury animals. Thus, it presents as a potential therapeutic for spinal cord injury with evidence for behavioural improvement and growth of injured pathways in non-human primate spinal cord injury.


Asunto(s)
Receptor Nogo 1/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Animales , Axones/patología , Médula Cervical/patología , Chlorocebus aethiops , Modelos Animales de Enfermedad , Femenino , Masculino , Actividad Motora/fisiología , Proteínas de la Mielina/metabolismo , Vaina de Mielina/metabolismo , Regeneración Nerviosa/fisiología , Neuronas/metabolismo , Neuronas/patología , Receptor Nogo 1/genética , Tractos Piramidales/patología , Ratas , Receptores Fc/genética , Receptores Fc/metabolismo , Recuperación de la Función , Médula Espinal/metabolismo , Médula Espinal/patología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología
3.
Ecol Lett ; 22(9): 1387-1395, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31207017

RESUMEN

Many plants rely on animals for seed dispersal, but are all individuals equally effective at dispersing seeds? If not, then the loss of certain individual dispersers from populations could have cascade effects on ecosystems. Despite the importance of seed dispersal for forest ecosystems, variation among individual dispersers and whether land-use change interferes with this process remains untested. Through a large-scale field experiment conducted on small mammal seed dispersers, we show that an individual's personality affects its choice of seeds, as well as how distant and where seeds are cached. We also show that anthropogenic habitat modifications shift the distribution of personalities within a population, by increasing the proportion of bold, active, and anxious individuals and in-turn affecting the potential survival and dispersal of seeds. We demonstrate that preserving diverse personality types within a population is critical for maintaining the key ecosystem function of seed dispersal.


Asunto(s)
Conducta Apetitiva , Conducta Alimentaria , Bosques , Personalidad , Roedores , Dispersión de Semillas , Animales , Semillas , Árboles
4.
Cell Rep ; 26(1): 145-158.e8, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30605671

RESUMEN

Cellular prion protein (PrPC) binds the scrapie conformation of PrP (PrPSc) and oligomeric ß-amyloid peptide (Aßo) to mediate transmissible spongiform encephalopathy (TSE) and Alzheimer's disease (AD), respectively. We conducted cellular and biochemical screens for compounds blocking PrPC interaction with Aßo. A polymeric degradant of an antibiotic targets Aßo binding sites on PrPC with low nanomolar affinity and prevents Aßo-induced pathophysiology. We then identified a range of negatively charged polymers with specific PrPC affinity in the low to sub-nanomolar range, from both biological (melanin) and synthetic (poly [4-styrenesulfonic acid-co-maleic acid], PSCMA) origin. Association of PSCMA with PrPC prevents Aßo/PrPC-hydrogel formation, blocks Aßo binding to neurons, and abrogates PrPSc production by ScN2a cells. We show that oral PSCMA yields effective brain concentrations and rescues APPswe/PS1ΔE9 transgenic mice from AD-related synapse loss and memory deficits. Thus, an orally active PrPC-directed polymeric agent provides a potential therapeutic approach to address neurodegeneration in AD and TSE.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Proteínas Priónicas/antagonistas & inhibidores , Animales , Ratones , Ratones Transgénicos , Transducción de Señal
6.
Invest Ophthalmol Vis Sci ; 56(2): 1357-66, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25655801

RESUMEN

PURPOSE: Glaucoma is a major cause of vision loss due to retinal ganglion cell (RGC) degeneration. Therapeutic intervention controls increased IOP, but neuroprotection is unavailable. NogoReceptor1 (NgR1) limits adult central nervous system (CNS) axonal sprouting and regeneration. We examined NgR1 blocking decoy as a potential therapy by defining the pharmacokinetics of intravitreal NgR(310)-Fc, its promotion of RGC axonal regeneration following nerve crush, and its neuroprotective effect in a microbead glaucoma model. METHODS: Human NgR1(310)-Fc was administered intravitreally, and levels were monitored in rat vitreal humor and retina. Axonal regeneration after optic nerve crush was assessed by cholera toxin ß anterograde labeling. In a microbead model of glaucoma with increased IOP, the number of surviving and actively transporting RGCs was determined after 4 weeks by retrograde tracing with Fluro-Gold (FG) from the superior colliculus. RESULTS: After intravitreal bolus administration, the terminal half-life of NgR1(310)-Fc between 1 and 7 days was approximately 24 hours. Injection of 5 µg protein once per week after optic nerve crush injury significantly increased RGCs with regenerating axons. Microbeads delivered to the anterior chamber increased pressure, and caused 15% reduction in FG-labeled RGCs of control rats, with a 40% reduction in large diameter RGCs. Intravitreal treatment with NgR1(310)-Fc did not reduce IOP, but maintained large diameter RGC density at control levels. CONCLUSIONS: Human NgR1(310)-Fc has favorable pharmacokinetics in the vitreal space and rescues large diameter RGC counts from increased IOP. Thus, the NgR1 blocking decoy protein may have efficacy as a disease-modifying therapy for glaucoma.


Asunto(s)
Axones/patología , Glaucoma/prevención & control , Regeneración Nerviosa/efectos de los fármacos , Traumatismos del Nervio Óptico/tratamiento farmacológico , Nervio Óptico/patología , Receptores de Superficie Celular/administración & dosificación , Células Ganglionares de la Retina/efectos de los fármacos , Animales , Axones/efectos de los fármacos , Línea Celular , Modelos Animales de Enfermedad , Femenino , Proteínas Ligadas a GPI/administración & dosificación , Glaucoma/etiología , Glaucoma/patología , Humanos , Inyecciones Intravítreas , Masculino , Compresión Nerviosa , Receptores Nogo , Nervio Óptico/efectos de los fármacos , Nervio Óptico/metabolismo , Traumatismos del Nervio Óptico/complicaciones , Traumatismos del Nervio Óptico/patología , Ratas , Ratas Sprague-Dawley , Células Ganglionares de la Retina/patología
7.
J Neurotrauma ; 31(24): 1955-66, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24964223

RESUMEN

Axonal growth and neurological recovery after traumatic spinal cord injury (SCI) is limited by the presence of inhibitory proteins in myelin, several of which act via the NgR1 protein in neurons. A truncated soluble ligand-binding fragment of NgR1 serves as a decoy and promotes recovery in acute and chronic rodent SCI models. To develop the translational potential of these observations, we created a human sequence-derived NgR1(310)-Fc protein. This protein is active in vitro. When the human NgR1 decoy is administered by continuous intracerebroventricular infusion to rats with a spinal contusion injury at doses of 0.09-0.53 mg/kg/d, neurological recovery is improved. Effective doses double the percentage of rats able to bear weight on their hindlimbs. Next, we considered the half-life and distribution of NgR1(310)-Fc after bolus delivery to the lumbar intrathecal space. The protein is found throughout the neuraxis and has a tissue half-life of approximately 2 days in the rat, and 5 days in the nonhuman primate. At an intermittent, once every 4 day, lumbar bolus dosing schedule of 0.14 mg/kg/d, NgR1(310)-Fc promoted locomotor rat recovery from spinal cord contusion at least as effectively as continuous infusion in open field and grid walking tasks. Moreover, the intermittent lumbar NgR1(310)-Fc treatment increased the growth of raphespinal axons into the lumbar spinal cord after injury. Thus, human NgR1(310)-Fc provides effective treatment for recovery from traumatic SCI in this preclinical model with a simplified administration regimen that facilitates clinical testing.


Asunto(s)
Proteínas de la Mielina/administración & dosificación , Fármacos Neuroprotectores/administración & dosificación , Receptores de Superficie Celular/administración & dosificación , Receptores Fc/administración & dosificación , Recuperación de la Función/efectos de los fármacos , Traumatismos de la Médula Espinal/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Femenino , Proteínas Ligadas a GPI/administración & dosificación , Humanos , Inyecciones Espinales , Receptor Nogo 1 , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/administración & dosificación
8.
PLoS One ; 8(9): e73749, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24040053

RESUMEN

Corticotropin releasing factor receptor 1 (CRF1) is the key receptor that mediates stress-related body responses. However to date there are no CRF1 antagonists that have shown clinical efficacy in stress-related diseases. We investigated the inhibitory effects of a new generation, topology 2 selective CRF1 antagonists, NGD 98-2 and NGD 9002 on exogenous and endogenous CRF-induced stimulation of colonic function and visceral hypersensitivity to colorectal distension (CRD) in conscious rats. CRF1 antagonists or vehicle were administered orogastrically (og) or subcutaneously (sc) before either intracerebroventricular (icv) or intraperitoneal (ip) injection of CRF (10 µg/kg), exposure to water avoidance stress (WAS, 60 min) or repeated CRD (60 mmHg twice, 10 min on/off at a 30 min interval). Fecal pellet output (FPO), diarrhea and visceromotor responses were monitored. In vehicle (og)-pretreated rats, icv CRF stimulated FPO and induced diarrhea in >50% of rats. NGD 98-2 or NGD 9002 (3, 10 and 30 mg/kg, og) reduced the CRF-induced FPO response with an inhibitory IC50 of 15.7 and 4.3 mg/kg respectively. At the highest dose, og NGD 98-2 or NGD 9002 blocked icv CRF-induced FPO by 67-87% and decreased WAS-induced-FPO by 23-53%. When administered sc, NGD 98-2 or NGD 9002 (30 mg/kg) inhibited icv and ip CRF-induced-FPO. The antagonists also prevented the development of nociceptive hyper-responsivity to repeated CRD. These data demonstrate that topology 2 CRF1 antagonists, NGD 98-2 and NGD 9002, administered orally, prevented icv CRF-induced colonic secretomotor stimulation, reduced acute WAS-induced defecation and blocked the induction of visceral sensitization to repeated CRD.


Asunto(s)
Colon/efectos de los fármacos , Pirazinas/farmacología , Receptores de Hormona Liberadora de Corticotropina/antagonistas & inhibidores , Vísceras/efectos de los fármacos , Administración Oral , Animales , Colon/fisiopatología , Hormona Liberadora de Corticotropina/administración & dosificación , Hormona Liberadora de Corticotropina/metabolismo , Hormona Liberadora de Corticotropina/farmacología , Defecación/efectos de los fármacos , Diarrea/fisiopatología , Diarrea/prevención & control , Antagonismo de Drogas , Hiperalgesia/fisiopatología , Hiperalgesia/prevención & control , Inyecciones Intraperitoneales , Inyecciones Intraventriculares , Inyecciones Subcutáneas , Intubación Gastrointestinal , Síndrome del Colon Irritable/metabolismo , Síndrome del Colon Irritable/fisiopatología , Síndrome del Colon Irritable/prevención & control , Masculino , Estructura Molecular , Pirazinas/administración & dosificación , Pirazinas/química , Ratas , Ratas Sprague-Dawley , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/fisiología , Vísceras/fisiopatología
9.
Expert Opin Investig Drugs ; 21(9): 1323-50, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22834476

RESUMEN

INTRODUCTION: Post-traumatic stress disorder (PTSD) is a chronic debilitating psychiatric disorder resulting from exposure to a severe traumatic stressor and an area of great unmet medical need. Advances in pharmacological treatments beyond the currently approved SSRIs are needed. AREAS COVERED: Background on PTSD, as well as the neurobiology of stress responding and fear conditioning, is provided. Clinical and preclinical data for investigational agents with diverse pharmacological mechanisms are summarized. EXPERT OPINION: Advances in the understanding of stress biology and mechanisms of fear conditioning plasticity provide a rationale for treatment approaches that may reduce hyperarousal and dysfunctional aversive memories in PTSD. One challenge is to determine if these components are independent or reflect a common underlying neurobiological alteration. Numerous agents reviewed have potential for reducing PTSD core symptoms or targeted symptoms in chronic PTSD. Promising early data support drug approaches that seek to disrupt dysfunctional aversive memories by interfering with consolidation soon after trauma exposure, or in chronic PTSD, by blocking reconsolidation and/or enhancing extinction. Challenges remain for achieving selectivity when attempting to alter aversive memories. Targeting the underlying traumatic memory with a combination of pharmacological therapies applied with appropriate chronicity, and in combination with psychotherapy, is expected to substantially improve PTSD treatment.


Asunto(s)
Memoria/efectos de los fármacos , Terapia Molecular Dirigida , Trastornos por Estrés Postraumático/tratamiento farmacológico , Animales , Terapia Combinada , Condicionamiento Psicológico/fisiología , Miedo/fisiología , Humanos , Plasticidad Neuronal/fisiología , Psicoterapia/métodos , Trastornos por Estrés Postraumático/fisiopatología
10.
J Med Chem ; 54(12): 4187-206, 2011 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-21618986

RESUMEN

The design, synthesis, and structure-activity relationships of a novel series of pyrazines, acting as corticotropin releasing factor-1 (CRF-1) receptor antagonists, are described. Synthetic methodologies were developed to prepare a number of substituted pyrazine cores utilizing regioselective halogenation and chemoselective derivatization. Noteworthy, an efficient 5-step synthesis was developed for the lead compound 59 (NGD 98-2), which required no chromatography. Compound 59 was characterized as an orally bioavailable, brain penetrant, and highly selective CRF-1 receptor antagonist. Occupancy of rat brain CRF-1 receptors was quantified using ex vivo receptor occupancy assays, using both brain tissue homogenates as well as brain slices receptor autoradiography. Behaviorally, oral administration of 59 significantly antagonized CRF-induced locomotor activity at doses as low as 10 mg/kg and dose-dependently reduced the restraint stress-induced ACTH increases.


Asunto(s)
Pirazinas/síntesis química , Receptores de Hormona Liberadora de Corticotropina/antagonistas & inhibidores , Tejido Adiposo/metabolismo , Administración Oral , Hormona Adrenocorticotrópica/sangre , Animales , Disponibilidad Biológica , Barrera Hematoencefálica/metabolismo , Línea Celular , Corteza Cerebral/metabolismo , Humanos , Técnicas In Vitro , Inyecciones Intraventriculares , Masculino , Microsomas Hepáticos/metabolismo , Actividad Motora/efectos de los fármacos , Pirazinas/química , Pirazinas/farmacología , Ensayo de Unión Radioligante , Ratas , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Restricción Física , Relación Estructura-Actividad
11.
Psychopharmacology (Berl) ; 214(4): 855-62, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21103864

RESUMEN

RATIONALE: Zolpidem is a hypnotic drug that binds to γ-aminobutyric acid type A receptors but lacks consistently demonstrable anxiolytic efficacy. METHODS: Rhesus monkeys (N = 4) were trained under a multiple schedule in which food-maintained responding was programmed (18-response fixed ratio) for a 5-min period, followed by a 5-min period in which the food-maintained responding was suppressed by response-contingent electric shock (20-response fixed ratio). Doses of zolpidem (range = 0.03 to 1.0 mg/kg, i.v.) were administered 5 min before the session, and responding was re-assessed at three additional 20-min intervals. A similar experiment also was carried out with the non-selective benzodiazepine, triazolam, over a dose range of 0.001 to 0.1 mg/kg, i.v. RESULTS: Zolpidem did not engender a significant increase in average rates of suppressed responding at earlier time points; however, rates of non-suppressed responding were robustly decreased. At 45- and 65-min post-injection, zolpidem treatment resulted in a dose-dependent increase in rates of suppressed responding. In contrast, the non-selective benzodiazepine triazolam increased rates of suppressed responding in a dose-dependent manner at all four time points, although decreases in non-suppressed responding were less at the later time points. CONCLUSIONS: These findings suggest that zolpidem has anxiolytic-like effects, but only >25 min after i.v. injection in this rhesus monkey conflict model. It was hypothesized that time-dependent effects on the response rate-suppressing properties of zolpidem become tolerant (i.e., acute tolerance). Because anxiolytic-like effects remain stable throughout the session, the absence of rate-decreasing effects may "unmask" anti-conflict effects.


Asunto(s)
Ansiolíticos/farmacología , Conflicto Psicológico , Piridinas/farmacología , Animales , Ansiolíticos/administración & dosificación , Condicionamiento Operante/efectos de los fármacos , Electrochoque , Inyecciones Intravenosas , Macaca mulatta , Masculino , Unión Proteica , Piridinas/administración & dosificación , Receptores de GABA-A/metabolismo , Refuerzo en Psicología , Factores de Tiempo , Zolpidem
12.
J Pharmacol Exp Ther ; 327(3): 898-909, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18753409

RESUMEN

The complement system represents an innate immune mechanism of host defense that has three effector arms, the C3a receptor, the C5a receptor (C5aR), and the membrane attack complex. Because of its inflammatory and immune-enhancing properties, the biological activity of C5a and its classical receptor have been widely studied. Because specific antagonism of the C5aR could have therapeutic benefit without affecting the protective immune response, the C5aR continues to be a promising target for pharmaceutical research. The lack of specific, potent and orally bioavailable small-molecule antagonists has limited the clinical investigation of the C5aR. We report the discovery of NDT 9513727 [N,N-bis(1,3-benzodioxol-5-ylmethyl)-1-butyl-2,4-diphenyl-1H-imidazole-5-methanamine], a small-molecule, orally bioavailable, selective, and potent inverse agonist of the human C5aR. NDT 9513727 was discovered based on the integrated use of in vitro affinity and functional assays in conjunction with medicinal chemistry. NDT 9513727 inhibited C5a-stimulated responses, including guanosine 5'-3-O-(thio)triphosphate binding, Ca(2+) mobilization, oxidative burst, degranulation, cell surface CD11b expression and chemotaxis in various cell types with IC(50)s from 1.1 to 9.2 nM, respectively. In C5a competition radioligand binding experiments, NDT 9513727 exhibited an IC(50) of 11.6 nM. NDT 9513727 effectively inhibited C5a-induced neutropenia in gerbil and cynomolgus macaque in vivo. The findings suggest that NDT 9513727 may be a promising new entity for the treatment of human inflammatory diseases.


Asunto(s)
Benzodioxoles/farmacología , Imidazoles/farmacología , Receptor de Anafilatoxina C5a/agonistas , Animales , Antígeno CD11b/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Degranulación de la Célula/efectos de los fármacos , Línea Celular , Quimiotaxis/efectos de los fármacos , Gerbillinae , Humanos , Macaca , Neutropenia/inducido químicamente , Unión Proteica , Estallido Respiratorio/efectos de los fármacos
14.
Bioorg Med Chem Lett ; 18(11): 3376-81, 2008 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-18448340

RESUMEN

A series of 5,6-diaryl-2-amino-pyrazines were prepared and found to have antagonist-like properties at the CB1 receptor. Subsequent SAR studies optimized both receptor potency and drug-like properties including solubility and Cytochrome-P450 inhibition potential. Optimized compounds were demonstrated to be inverse agonists and compared in vivo with rimonabant for their ability to inhibit food intake, to occupy central CB1 receptors and to influence hormonal markers associated with obesity.


Asunto(s)
Pirazinas/síntesis química , Pirazinas/farmacología , Receptor Cannabinoide CB1/agonistas , Animales , Glucemia/análisis , Técnicas Químicas Combinatorias , Citocromo P-450 CYP3A , Inhibidores del Citocromo P-450 CYP3A , Modelos Animales de Enfermedad , Conducta Alimentaria/efectos de los fármacos , Humanos , Microsomas Hepáticos/efectos de los fármacos , Estructura Molecular , Obesidad/metabolismo , Piperidinas/farmacología , Pirazinas/sangre , Pirazoles/farmacología , Ratas , Receptor Cannabinoide CB1/sangre , Rimonabant , Relación Estructura-Actividad
15.
J Biol Chem ; 280(49): 40617-23, 2005 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-16230349

RESUMEN

Anaphylatoxin C5a is a potent inflammatory mediator associated with pathogenesis and progression of several inflammation-associated disorders. Small molecule C5a receptor (C5aR) antagonist development is hampered by species-specific receptor biology and the associated inability to use standard rat and mouse in vivo models. Gerbil is one rodent species reportedly responsive to small molecule C5aR antagonists with human C5aR affinity. We report the identification of the gerbil C5aR cDNA using a degenerate primer PCR cloning strategy. The nucleotide sequence revealed an open reading frame encoding a 347-amino acid protein. The cloned receptor (expressed in Sf9 cells) bound recombinant human C5a with nanomolar affinity. Alignment of the gerbil C5aR sequence with those from other species showed that a Trp residue in transmembrane domain V is the only transmembrane domain amino acid unique to small molecule C5aR antagonist-responsive species (i.e. gerbil, human, and non-human primate). Site-directed mutagenesis was used to generate human and mouse C5aRs with a residue exchange of this Trp residue. Mutation of Trp to Leu in human C5aR completely eliminated small molecule antagonist-receptor interaction. In contrast, mutation of Leu to Trp in mouse C5aR enabled small molecule antagonist-receptor interaction. This crucial Trp residue is located deeper within transmembrane domain V than residues reportedly involved in C5a- and cyclic peptide C5a antagonist-receptor interaction, suggesting a novel interaction site(s) for small molecule antagonists. These data provide insight into the basis for small molecule antagonist species selectivity and further define sites critical for C5aR activation and function.


Asunto(s)
Membrana Celular/química , Gerbillinae , Receptor de Anafilatoxina C5a/antagonistas & inhibidores , Receptor de Anafilatoxina C5a/química , Triptófano , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión , Clonación Molecular , Expresión Génica , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Humanos , Ratones , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Ratas , Receptor de Anafilatoxina C5a/genética , Alineación de Secuencia , Especificidad de la Especie , Relación Estructura-Actividad
16.
AHP J ; : 14-6, 18, 20, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15989214

RESUMEN

In his book, Servanthood: Leadership for the Third Millennium, Bennett Sims states boldly, "To challenge people to give is to do them a favor." As development professionals, do we truly agree? When we ask someone to give, do we believe we are doing them a favor? To challenge people to give, our greatest effort should center on creating meaningful donor relationships.


Asunto(s)
Obtención de Fondos/métodos , Donaciones , Hospitales Filantrópicos/economía , Relaciones Interpersonales , Liderazgo , Organizaciones sin Fines de Lucro/economía , Humanos , Relaciones Interprofesionales , Relaciones Públicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA