Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36834521

RESUMEN

Osteoarthritis (OA) is described as a chronic degenerative disease characterized by the loss of articular cartilage. Senescence is a natural cellular response to stressors. Beneficial in certain conditions, the accumulation of senescent cells has been implicated in the pathophysiology of many diseases associated with aging. Recently, it has been demonstrated that mesenchymal stem/stromal cells isolated from OA patients contain many senescent cells that inhibit cartilage regeneration. However, the link between cellular senescence in MSCs and OA progression is still debated. In this study, we aim to characterize and compare synovial fluid MSCs (sf-MSCs), isolated from OA joints, with healthy sf-MSCs, investigating the senescence hallmarks and how this state could affect cartilage repair. Sf-MSCs were isolated from tibiotarsal joints of healthy and diseased horses with an established diagnosis of OA with an age ranging from 8 to 14 years. Cells were cultured in vitro and characterized for cell proliferation assay, cell cycle analysis, ROS detection assay, ultrastructure analysis, and the expression of senescent markers. To evaluate the influence of senescence on chondrogenic differentiation, OA sf-MSCs were stimulated in vitro for up to 21 days with chondrogenic factors, and the expression of chondrogenic markers was compared with healthy sf-MSCs. Our findings demonstrated the presence of senescent sf-MSCs in OA joints with impaired chondrogenic differentiation abilities, which could have a potential influence on OA progression.


Asunto(s)
Células Madre Mesenquimatosas , Osteoartritis , Caballos , Animales , Líquido Sinovial , Células Cultivadas , Osteoartritis/metabolismo , Senescencia Celular/fisiología , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Condrogénesis
2.
Biomedicines ; 10(5)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35625913

RESUMEN

Tendinopathies are at the frontier of advanced responses to health challenges and sectoral policy targets. Cell-based therapy holds great promise for tendon disorder resolution. To verify the role of stepwise trans-differentiation of amniotic epithelial stem cells (AECs) in tendon regeneration, in the present research three different AEC subsets displaying an epithelial (eAECs), mesenchymal (mAECs), and tendon-like (tdAECs) phenotype were allotransplanted in a validated experimental sheep Achilles tendon injury model. Tissue healing was analyzed adopting a comparative approach at two early healing endpoints (14 and 28 days). All three subsets of transplanted cells were able to accelerate regeneration: mAECs with a lesser extent than eAECs and tdAECs as indicated in the summary of the total histological scores (TSH), where at day 28 eAECs and tdAECs had better significant scores with respect to mAEC-treated tendons (p < 0.0001). In addition, the immunomodulatory response at day 14 showed in eAEC-transplanted tendons an upregulation of pro-regenerative M2 macrophages with respect to mAECs and tdAECs (p < 0.0001). In addition, in all allotransplanted tendons there was a favorable IL10/IL12 compared to CTR (p < 0.001). The eAECs and tdAECs displayed two different underlying regenerative mechanisms in the tendon. The eAECs positively influenced regeneration mainly through their greater ability to convey in the host tissue the shift from pro-inflammatory to pro-regenerative responses, leading to an ordered extracellular matrix (ECM) deposition and blood vessel remodeling. On the other hand, the transplantation of tdAECs acted mainly on the proliferative phase by impacting the density of ECM and by supporting a prompt recovery, inducing a low cellularity and angle alignment of the host cell compartment. These results support the idea that AECs lay the groundwork for production of different cell phenotypes that can orient tendon regeneration through a crosstalk with the host tissue. In particular, the obtained evidence suggests that eAECs are a practicable and efficient strategy for the treatment of acute tendinopathies, thus reinforcing the grounds to move their use towards clinical practice.

3.
Mech Ageing Dev ; 197: 111515, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34062172

RESUMEN

Cellular senescence is a hallmark of ageing and it plays a key role in the development of age-related diseases. Abdominal aortic aneurysm (AAA) is an age related degenerative vascular disorder, characterized by a progressive dilatation of the vascular wall and high risk of rupture over time. Nowadays, no pharmacological therapies are available and the understanding of the molecular mechanisms that lead to AAA onset and development are poorly defined. In this study we investigated the cellular features of senescence in vascular mesenchymal stromal cells, isolated from pathological (AAA - MSCs) and healthy (h - MSCs) segments of human abdominal aorta and their implication in impairing the vascular repair ability of MSCs. Cell proliferation, ROS production, cell surface area, the expression of cyclin dependent kinase inhibitors p21CIP1 and p16INK4a, the activation of the DNA damage response and a dysregulated autophagy showed a senescent state in AAA - MSCs compared to h-MSCs. Moreover, a reduced ability to differentiate toward endothelial cells was observed in AAA - MSCs. All these data suggest that the accumulation of senescent vascular MSCs over time impairs their remodeling ability during ageing. This condition could support the onset and development of AAA.


Asunto(s)
Aneurisma de la Aorta Abdominal/metabolismo , Proliferación Celular , Senescencia Celular , Células Madre Mesenquimatosas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Femenino , Humanos , Masculino
4.
Artículo en Inglés | MEDLINE | ID: mdl-32258004

RESUMEN

Amniotic membrane (AM) is considered an important medical device with many applications in regenerative medicine. The therapeutic properties of AM are due to its resistant extracellular matrix and to the large number of bioactive molecules released by its cells. An important goal that still remains to be achieved is the identification of cultural and preservation protocols able to maintain in time the membrane morphology and the biological properties of its cells. Recently, our research group demonstrated that progesterone (P4) is crucial in preventing the loss of the epithelial phenotype of amniotic epithelial cells in vitro. Followed by this premise, it has been evaluated whether P4 may also affect AM properties in a short-term culture. Results confirm that P4 preserves AM integrity and architecture with respect to untreated AM, which showed alterations in morphology. Transmission electron microscopy (TEM) analyses demonstrate that P4 also maintains unaltered cell-cell junctions, nuclear status, and intracellular organelles. On the contrary, an untreated AM experienced an extensive cell death and a strong reduction of immunomodulatory properties, measured in terms of anti-inflammatory cytokine expression and secretion. Overall, these results could open to new strategies to ameliorate the protocols for cryopreservation and tissue culture, which represent preliminary stages of AM application in regenerative medicine.

5.
Cells ; 8(10)2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31547126

RESUMEN

Osteoarthritis is a degenerative disease that strongly correlates with age and promotes the breakdown of joint cartilage and subchondral bone. There has been a surge of interest in developing cell-based therapies, focused particularly on the use of mesenchymal stromal cells (MSCs) isolated from adult tissues. It seems that MSCs derived from synovial joint tissues exhibit superior chondrogenic ability, but their unclear distribution and low frequency actually limit their clinical application. To date, the influence of aging on synovial joint derived MSCs' biological characteristics and differentiation abilities remains unknown, and a full understanding of the mechanisms involved in cellular aging is lacking. The aim of this study was therefore to investigate the presence of age-related alterations in synovial fluid MSCs and their influence on the potential ability of MSCs to differentiate toward chondrogenic phenotypes. Synovial fluid MSCs, isolated from healthy equine donors from 3 to 40 years old, were cultured in vitro and stimulated towards chondrogenic differentiation for up to 21 days. An equine model was chosen due to the high degree of similarity of the anatomy of the knee joint to the human knee joint and as spontaneous disorders develop that are clinically relevant to similar human disorders. The results showed a reduction in cell proliferation correlated with age and the presence of age-related tetraploid cells. Ultrastructural analysis demonstrated the presence of morphological features correlated with aging such as endoplasmic reticulum stress, autophagy, and mitophagy. Alcian blue assay and real-time PCR data showed a reduction of efficiency in the chondrogenic differentiation of aged synovial fluid MSCs compared to young MSCs. All these data highlighted the influence of aging on MSCs' characteristics and ability to differentiate towards chondrogenic differentiation and emphasize the importance of considering age-related alterations of MSCs in clinical applications.


Asunto(s)
Envejecimiento/patología , Diferenciación Celular , Condrocitos/fisiología , Células Madre Mesenquimatosas/fisiología , Osteoartritis/patología , Envejecimiento/fisiología , Animales , Proliferación Celular , Células Cultivadas , Senescencia Celular/fisiología , Condrocitos/patología , Condrogénesis/fisiología , Modelos Animales de Enfermedad , Femenino , Caballos , Humanos , Masculino , Células Madre Mesenquimatosas/patología , Osteoartritis/fisiopatología , Líquido Sinovial/citología
6.
Stem Cells Int ; 2018: 3237253, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29731777

RESUMEN

Adult stem cells are a promising cell source for cartilage regeneration. They resided in a special microenvironment known as the stem-cell niche, characterized by the presence of low oxygen concentration. Cobalt chloride (CoCl2) imitates hypoxia in vitro by stabilizing hypoxia-inducible factor-alpha (HIF-1α), which is the master regulator in the cellular adaptive response to hypoxia. In this study, the influence of CoCl2 on the chondrogenic potential of human MSCs, isolated from dental pulp, umbilical cord, and adipose tissue, was investigated. Cells were treated with concentrations of CoCl2 ranging from 50 to 400 µM. Cell viability, HIF-1α protein synthesis, and the expression of the chondrogenic markers were analyzed. The results showed that the CoCl2 supplementation had no effect on cell viability, while the upregulation of chondrogenic markers such as SOX9, COL2A1, VCAN, and ACAN was dependent on the cellular source. This study shows that hypoxia, induced by CoCl2 treatment, can differently influence the behavior of MSCs, isolated from different sources, in their chondrogenic potential. These findings should be taken into consideration in the treatment of cartilage repair and regeneration based on stem cell therapies.

7.
Stem Cell Rev Rep ; 14(4): 574-584, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29508214

RESUMEN

Wharton's jelly (WJ) is an important source of mesenchymal stem cells (MSCs) both in human and other animals. The aim of this study was to compare human and equine WJMSCs. Human and equine WJMSCs were isolated and cultured using the same protocols and culture media. Cells were characterized by analysing morphology, growth rate, migration and adhesion capability, immunophenotype, differentiation potential and ultrastructure. Results showed that human and equine WJMSCs have similar ultrastructural details connected with intense synthetic and metabolic activity, but differ in growth, migration, adhesion capability and differentiation potential. In fact, at the scratch assay and transwell migration assay, the migration ability of human WJMSCs was higher (P < 0.05) than that of equine cells, while the volume of spheroids obtained after 48 h of culture in hanging drop was larger than the volume of equine ones (P < 0.05), demonstrating a lower cell adhesion ability. This can also revealed in the lower doubling time of equine cells (3.5 ± 2.4 days) as compared to human (6.5 ± 4.3 days) (P < 0.05), and subsequently in the higher number of cell doubling after 44 days of culture observed for the equine (20.3 ± 1.7) as compared to human cells (8.7 ± 2.4) (P < 0.05), and to the higher (P < 0.05) ability to form fibroblast colonies at P3. Even if in both species tri-lineage differentiation was achieved, equine cells showed an higher chondrogenic and osteogenic differentiation ability (P < 0.05). Our findings indicate that, although the ultrastructure demonstrated a staminal phenotype in human and equine WJMSCs, they showed different properties reflecting the different sources of MSCs.


Asunto(s)
Diferenciación Celular , Movimiento Celular , Proliferación Celular , Células Madre Mesenquimatosas/citología , Gelatina de Wharton/citología , Animales , Adhesión Celular , Células Cultivadas , Condrogénesis , Caballos , Humanos , Células Madre Mesenquimatosas/ultraestructura , Microscopía Electrónica de Transmisión , Osteogénesis , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...