Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Sci Rep ; 14(1): 8158, 2024 04 08.
Article En | MEDLINE | ID: mdl-38589477

Plasmodium falciparum with the histidine rich protein 2 gene (pfhrp2) deleted from its genome can escape diagnosis by HRP2-based rapid diagnostic tests (HRP2-RDTs). The World Health Organization (WHO) recommends switching to a non-HRP2 RDT for P. falciparum clinical case diagnosis when pfhrp2 deletion prevalence causes ≥ 5% of RDTs to return false negative results. Tanzania is a country of heterogenous P. falciparum transmission, with some regions approaching elimination and others at varying levels of control. In concordance with the current recommended WHO pfhrp2 deletion surveillance strategy, 100 health facilities encompassing 10 regions of Tanzania enrolled malaria-suspected patients between February and July 2021. Of 7863 persons of all ages enrolled and providing RDT result and blood sample, 3777 (48.0%) were positive by the national RDT testing for Plasmodium lactate dehydrogenase (pLDH) and/or HRP2. A second RDT testing specifically for the P. falciparum LDH (Pf-pLDH) antigen found 95 persons (2.5% of all RDT positives) were positive, though negative by the national RDT for HRP2, and were selected for pfhrp2 and pfhrp3 (pfhrp2/3) genotyping. Multiplex antigen detection by laboratory bead assay found 135/7847 (1.7%) of all blood samples positive for Plasmodium antigens but very low or no HRP2, and these were selected for genotyping as well. Of the samples selected for genotyping based on RDT or laboratory multiplex result, 158 were P. falciparum DNA positive, and 140 had sufficient DNA to be genotyped for pfhrp2/3. Most of these (125/140) were found to be pfhrp2+/pfhrp3+, with smaller numbers deleted for only pfhrp2 (n = 9) or only pfhrp3 (n = 6). No dual pfhrp2/3 deleted parasites were observed. This survey found that parasites with these gene deletions are rare in Tanzania, and estimated that 0.24% (95% confidence interval: 0.08% to 0.39%) of false-negative HRP2-RDTs for symptomatic persons were due to pfhrp2 deletions in this 2021 Tanzania survey. These data provide evidence for HRP2-based diagnostics as currently accurate for P. falciparum diagnosis in Tanzania.


Blood Group Antigens , Malaria, Falciparum , Humans , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Gene Deletion , Tanzania/epidemiology , Diagnostic Tests, Routine/methods , Antigens, Protozoan/genetics , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Malaria, Falciparum/genetics , Health Facilities , DNA
2.
Parasit Vectors ; 17(1): 153, 2024 Mar 23.
Article En | MEDLINE | ID: mdl-38519992

BACKGROUND: Recent studies point to the need to incorporate the detection of non-falciparum species into malaria surveillance activities in sub-Saharan Africa, where 95% of the world's malaria cases occur. Although malaria caused by infection with Plasmodium falciparum is typically more severe than malaria caused by the non-falciparum Plasmodium species P. malariae, P. ovale spp. and P. vivax, the latter may be more challenging to diagnose, treat, control and ultimately eliminate. The prevalence of non-falciparum species throughout sub-Saharan Africa is poorly defined. Tanzania has geographical heterogeneity in transmission levels but an overall high malaria burden. METHODS: To estimate the prevalence of malaria species in Mainland Tanzania, we randomly selected 1428 samples from 6005 asymptomatic isolates collected in previous cross-sectional community surveys across four regions and analyzed these by quantitative PCR to detect and identify the Plasmodium species. RESULTS: Plasmodium falciparum was the most prevalent species in all samples, with P. malariae and P. ovale spp. detected at a lower prevalence (< 5%) in all four regions; P. vivax was not detected in any sample. CONCLUSIONS: The results of this study indicate that malaria elimination efforts in Tanzania will need to account for and enhance surveillance of these non-falciparum species.


Malaria, Falciparum , Malaria, Vivax , Malaria , Humans , Asymptomatic Infections/epidemiology , Cross-Sectional Studies , Malaria/epidemiology , Malaria, Falciparum/epidemiology , Malaria, Vivax/epidemiology , Plasmodium falciparum , Plasmodium malariae , Prevalence , Tanzania/epidemiology
3.
J Infect Dis ; 229(4): 959-968, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-37992117

BACKGROUND: Recent data indicate that non-Plasmodium falciparum species may be more prevalent than thought in sub-Saharan Africa. Although Plasmodium malariae, Plasmodium ovale spp., and Plasmodium vivax are less severe than P. falciparum, treatment and control are more challenging, and their geographic distributions are not well characterized. METHODS: We randomly selected 3284 of 12 845 samples collected from cross-sectional surveys in 100 health facilities across 10 regions of Mainland Tanzania and performed quantitative real-time PCR to determine presence and parasitemia of each malaria species. RESULTS: P. falciparum was most prevalent, but P. malariae and P. ovale were found in all but 1 region, with high levels (>5%) of P. ovale in 7 regions. The highest P. malariae positivity rate was 4.5% in Mara and 8 regions had positivity rates ≥1%. We only detected 3 P. vivax infections, all in Kilimanjaro. While most nonfalciparum malaria-positive samples were coinfected with P. falciparum, 23.6% (n = 13 of 55) of P. malariae and 14.7% (n = 24 of 163) of P. ovale spp. were monoinfections. CONCLUSIONS: P. falciparum remains by far the largest threat, but our data indicate that malaria elimination efforts in Tanzania will require increased surveillance and improved understanding of the biology of nonfalciparum species.


Malaria, Falciparum , Malaria , Humans , Tanzania/epidemiology , Cross-Sectional Studies , Malaria/epidemiology , Malaria, Falciparum/epidemiology , Plasmodium malariae/genetics
4.
medRxiv ; 2023 Nov 30.
Article En | MEDLINE | ID: mdl-37986920

Background: Emergence of artemisinin partial resistance (ART-R) in Plasmodium falciparum is a growing threat to the efficacy of artemisinin combination therapies (ACT) and the efforts for malaria elimination. The emergence of Plasmodium falciparum Kelch13 (K13) R561H in Rwanda raised concern about the impact in neighboring Tanzania. In addition, regional concern over resistance affecting sulfadoxine-pyrimethamine (SP), which is used for chemoprevention strategies, is high. Methods: To enhance longitudinal monitoring, the Molecular Surveillance of Malaria in Tanzania (MSMT) project was launched in 2020 with the goal of assessing and mapping antimalarial resistance. Community and clinic samples were assessed for resistance polymorphisms using a molecular inversion probe platform. Findings: Genotyping of 6,278 samples collected countrywide in 2021 revealed a focus of K13 561H mutants in northwestern Tanzania (Kagera) with prevalence of 7.7% (50/649). A small number of 561H mutants (about 1%) were found as far as 800 km away in Tabora, Manyara, and Njombe. Genomic analysis suggests some of these parasites are highly related to isolates collected in Rwanda in 2015, supporting regional spread of 561H. However, a novel haplotype was also observed, likely indicating a second origin in the region. Other validated resistance polymorphisms (622I and 675V) were also identified. A focus of high sulfadoxine-pyrimethamine drug resistance was also identified in Kagera with a prevalence of dihydrofolate reductase 164L of 15% (80/526). Interpretation: These findings demonstrate the K13 561H mutation is entrenched in the region and that multiple origins of ART-R, similar as to what was seen in Southeast Asia, have occurred. Mutations associated with high levels of SP resistance are increasing. These results raise concerns about the long-term efficacy of artemisinin and chemoprevention antimalarials in the region. Funding: This study was funded by the Bill and Melinda Gates Foundation and the National Institutes of Health.

5.
medRxiv ; 2023 Sep 20.
Article En | MEDLINE | ID: mdl-37790396

Recent data indicate that non- Plasmodium falciparum species may be more prevalent than previously realized in sub-Saharan Africa, the region where 95% of the world's malaria cases occur. Although Plasmodium malariae, Plasmodium ovale spp., and Plasmodium vivax are generally less severe than P. falciparum , treatment and control are more challenging, and their geographic distributions are not well characterized. In order to characterize the distribution of malaria species in Mainland Tanzania (which has a high burden and geographically heterogeneous transmission levels), we randomly selected 3,284 samples from 12,845 samples to determine presence and parasitemia of different malaria species. The samples were collected from cross-sectional surveys in 100 health facilities across ten regions and analyzed via quantitative real-time PCR to characterize regional positivity rates for each species. P. falciparum was most prevalent, but P. malariae and P. ovale were found in all regions except Dar es Salaam, with high levels (>5%) of P. ovale in seven regions (70%). The highest positivity rate of P. malariae was 4.5% in Mara region and eight regions (80%) had positivity rates ≥1%. We also detected three P. vivax infections in the very low-transmission Kilimanjaro region. While most samples that tested positive for non-falciparum malaria were co-infected with P. falciparum , 23.6% (n = 13/55) of P. malariae and 14.7% (n = 24/163) of P. ovale spp. samples were mono-infections. P. falciparum remains by far the largest threat, but our data indicate that malaria elimination efforts in Tanzania will require increased surveillance and improved understanding of the biology of non-falciparum species.

6.
J Pathol Inform ; 14: 100188, 2023.
Article En | MEDLINE | ID: mdl-36714453

Background: Telepathology utilizing high-throughput static whole slide image scanners is proposed to address the challenge of limited pathology services in resource-restricted settings. However, the prohibitive equipment costs and sophisticated technologies coupled with large amounts of space to set up the devices make it impractical for use in resource-limited settings. Herein, we aimed to address this challenge by validating a portable whole slide imaging (WSI) device against glass slide microscopy (GSM) using lymph node biopsies from suspected lymphoma cases from Sub-Saharan Africa. Material and methods: This was part of a multicenter prospective case-control head-to-head comparison study of liquid biopsy against conventional pathology. For the portable WSI scanner validation, the study pathologists evaluated 105 surgical lymph node specimens initially confirmed by gold-standard pathology between February and December 2021. The tissues were processed according to standard protocols for Hematoxylin and Eosin (H&E) and Immunohistochemistry (IHC) staining by well-trained histotechnicians, then digitalized the H& E and IHC slides at each center. The digital images were anonymized and uploaded to a HIPAA-compliant server by the histotechnicians. Three study pathologists independently accessed and reviewed the images after a 6-week washout. The agreement between diagnoses established on GSM and WSI across the pathologists was described and measured using Cohens' kappa coefficient (κ). Results: On GSM, 65.5% (n=84) of specimens were lymphoma; 25% were classified as benign, while 9.5% were metastatic. Morphological quality assessment on GSM and WSI established that 79.8% and 53.6% of cases were of high quality, respectively. When diagnoses by GSM were compared to WSI, the overall concordance for various diagnostic categories was 93%, 100%, and 86% for lymphoma, metastases, and benign conditions respectively. The sensitivity and specificity of WSI for the detection of lymphoma were 95.2% and 85.7%, respectively, with an overall inter-observer agreement (κ) of 0.86; 95% CI (0.70-0.95). Conclusions: We demonstrate that mobile whole slide imaging (WSI) is non-inferior to conventional glass slide microscopy (GSM) for the primary diagnosis of malignant infiltration of lymph node specimens. Our results further provide proof of concept that mobile WSI can be adapted to resource-restricted settings for primary surgical pathology and would significantly improve patient outcomes.

7.
medRxiv ; 2023 Dec 30.
Article En | MEDLINE | ID: mdl-38234751

Recent studies point to the need to incorporate non-falciparum species detection into malaria surveillance activities in sub-Saharan Africa, where 95% of malaria cases occur. Although Plasmodium falciparum infection is typically more severe, diagnosis, treatment, and control for P. malariae, P. ovale spp., and P. vivax may be more challenging. The prevalence of these species throughout sub-Saharan Africa is poorly defined. Tanzania has geographically heterogeneous transmission levels but an overall high malaria burden. In order to estimate the prevalence of malaria species in Mainland Tanzania, 1,428 samples were randomly selected from 6,005 asymptomatic isolates collected in cross-sectional community surveys across four regions and analyzed via qPCR to detect each Plasmodium species. P. falciparum was most prevalent, with P. malariae and P. ovale spp. detected at lower prevalence (<5%) in all four regions. P. vivax was not detected. Malaria elimination efforts in Tanzania will need to account for these non-falciparum species.

8.
Front Cell Infect Microbiol ; 12: 757844, 2022.
Article En | MEDLINE | ID: mdl-35909968

Recent developments in molecular biology and genomics have revolutionized biology and medicine mainly in the developed world. The application of next generation sequencing (NGS) and CRISPR-Cas tools is now poised to support endemic countries in the detection, monitoring and control of endemic diseases and future epidemics, as well as with emerging and re-emerging pathogens. Most low and middle income countries (LMICs) with the highest burden of infectious diseases still largely lack the capacity to generate and perform bioinformatic analysis of genomic data. These countries have also not deployed tools based on CRISPR-Cas technologies. For LMICs including Tanzania, it is critical to focus not only on the process of generation and analysis of data generated using such tools, but also on the utilization of the findings for policy and decision making. Here we discuss the promise and challenges of NGS and CRISPR-Cas in the context of malaria as Africa moves towards malaria elimination. These innovative tools are urgently needed to strengthen the current diagnostic and surveillance systems. We discuss ongoing efforts to deploy these tools for malaria detection and molecular surveillance highlighting potential opportunities presented by these innovative technologies as well as challenges in adopting them. Their deployment will also offer an opportunity to broadly build in-country capacity in pathogen genomics and bioinformatics, and to effectively engage with multiple stakeholders as well as policy makers, overcoming current workforce and infrastructure challenges. Overall, these ongoing initiatives will build the malaria molecular surveillance capacity of African researchers and their institutions, and allow them to generate genomics data and perform bioinformatics analysis in-country in order to provide critical information that will be used for real-time policy and decision-making to support malaria elimination on the continent.


Communicable Diseases , Malaria , CRISPR-Cas Systems , High-Throughput Nucleotide Sequencing , Humans , Malaria/diagnosis , Malaria/epidemiology , Malaria/prevention & control , Tanzania
9.
J Surg Case Rep ; 2020(10): rjaa406, 2020 Oct.
Article En | MEDLINE | ID: mdl-33123343

Malignant mixed Müllerian tumor of the ovary is rare aggressive tumor that is histologically defined by the presence of malignant epithelial and stromal components. We report a 37-year-old woman who consulted our facility complaining of abdominal distention and a painful palpable mass over her lower abdomen. Physical examination including computerized tomography revealed a complex cystic mass lesion on the left ovary with extensive omental involvement. Ovarian cancer was suspected and the patient underwent debulking surgery. The histopathology of the specimen revealed a high-grade tumor composed of both malignant epithelial and sarcomatous elements. Both epithelial and stromal components stained positive for p53 immunostaining. Before the initiation of chemotherapy, on 5th day postoperation, the patient was found unresponsive. The stage of the disease seems to be the most important prognostic factor, thus emphasis should be made to identify it in earlier stages.

...