Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Leukoc Biol ; 115(2): 358-373, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-37793181

RESUMEN

Exposure to pathogen-associated molecular patterns (PAMPs) induces an augmented, broad-spectrum antimicrobial response to subsequent infection, a phenomenon termed innate immune memory. This study examined the effects of treatment with ß-glucan, a fungus-derived dectin-1 ligand, or monophosphoryl lipid A (MPLA), a bacteria-derived Toll-like receptor 4 ligand, on innate immune memory with a focus on identifying common cellular and molecular pathways activated by these diverse PAMPs. Treatment with either PAMP prepared the innate immune system to respond more robustly to Pseudomonas aeruginosa infection in vivo by facilitating mobilization of innate leukocytes into blood, recruitment of leukocytes to the site of infection, augmentation of microbial clearance, and attenuation of cytokine production. Examination of macrophages ex vivo showed amplification of metabolism, phagocytosis, and respiratory burst after treatment with either agent, although MPLA more robustly augmented these activities and more effectively facilitated killing of bacteria. Both agents activated gene expression pathways in macrophages that control inflammation, antimicrobial functions, and protein synthesis and suppressed pathways regulating cell division. ß-glucan treatment minimally altered macrophage differential gene expression in response to lipopolysaccharide (LPS) challenge, whereas MPLA attenuated the magnitude of the LPS-induced transcriptional response, especially cytokine gene expression. These results show that ß-glucan and MPLA similarly augment the innate response to infection in vivo. Yet, MPLA more potently induces alterations in macrophage metabolism, antimicrobial functions, gene transcription and the response to LPS.


Asunto(s)
Antiinfecciosos , beta-Glucanos , Lipopolisacáridos/farmacología , Moléculas de Patrón Molecular Asociado a Patógenos , Inmunidad Entrenada , Ligandos , Citocinas , beta-Glucanos/farmacología , Bacterias , Inmunidad Innata
2.
Front Immunol ; 13: 1044662, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439136

RESUMEN

Immunocompromised populations are highly vulnerable to developing life-threatening infections. Strategies to protect patients with weak immune responses are urgently needed. Employing trained immunity, whereby innate leukocytes undergo reprogramming upon exposure to a microbial product and respond more robustly to subsequent infection, is a promising approach. Previously, we demonstrated that the TLR4 agonist monophosphoryl lipid A (MPLA) induces trained immunity and confers broad resistance to infection. TLR4 signals through both MyD88- and TRIF-dependent cascades, but the relative contribution of each pathway to induction of trained immunity is unknown. Here, we show that MPLA-induced resistance to Staphylococcus aureus infection is lost in MyD88-KO, but not TRIF-KO, mice. The MyD88-activating agonist CpG (TLR9 agonist), but not TRIF-activating Poly I:C (TLR3 agonist), protects against infection in a macrophage-dependent manner. MPLA- and CpG-induced augmentation of macrophage metabolism and antimicrobial functions is blunted in MyD88-, but not TRIF-KO, macrophages. Augmentation of antimicrobial functions occurs in parallel to metabolic reprogramming and is dependent, in part, on mTOR activation. Splenic macrophages from CpG-treated mice confirmed that TLR/MyD88-induced reprogramming occurs in vivo. TLR/MyD88-triggered metabolic and functional reprogramming was reproduced in human monocyte-derived macrophages. These data show that MyD88-dependent signaling is critical in TLR-mediated trained immunity.


Asunto(s)
Factor 88 de Diferenciación Mieloide , Receptor Toll-Like 4 , Humanos , Ratones , Animales , Factor 88 de Diferenciación Mieloide/metabolismo , Receptor Toll-Like 4/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Receptores Toll-Like/metabolismo , Macrófagos , Proteínas Adaptadoras Transductoras de Señales/metabolismo
3.
Shock ; 58(4): 295-303, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36018281

RESUMEN

ABSTRACT: Objectives: Nosocomial pneumonia is a common complication in critically ill patients. The goal of this study was to examine the efficacy of the Toll-like receptor 4 agonist 3-deacyl phosphorylated hexacyl disaccharide (3D PHAD), in a clinically relevant murine model of pneumonia, and assess the cellular mechanisms that mediate the protective response. Design: Mice received intrapulmonary 3D PHAD (20 µg) or vehicle for 2 consecutive days before challenge with intrapulmonary Klebsiella pneumoniae (2.3 × 10 3 colony-forming units). Mice were followed for 14-day survival, pulmonary K. pneumoniae burden, lung leukocyte profile, leukocyte phagocytic capacity, and cytokine production. Pneumonia severity and leukocyte recruitment were further assessed by histological evaluation. Setting: Research laboratory. Subjects: Wild-type, male C57BL/6 J mice. Interventions: Intrapulmonary treatment with 20 µg 3D PHAD for 2 consecutive days. Measurements and main results: Intrapulmonary treatment with 3D PHAD decreased lung K. pneumoniae colony-forming units and pneumonia severity with an associated improvement in survival compared with mice treated with vehicle. The numbers of neutrophils, monocytes, and macrophages in the lungs of 3D PHAD-treated mice were higher than those in vehicle-treated mice before infection but were not significantly different from vehicle-treated mice at 48 h after K. pneumoniae challenge. Lung innate leukocytes from 3D PHAD-treated mice had increased phagocytic capacity. Treatment with 3D PHAD alone increased cytokines in the lungs but decreased cytokines in plasma during K. pneumoniae pneumonia as compared with control. Conclusions: Intrapulmonary treatment with 3D PHAD augments innate immunity in the lung and facilitates resistance to K. pneumoniae pneumonia.


Asunto(s)
Infecciones por Klebsiella , Neumonía Bacteriana , Masculino , Ratones , Animales , Klebsiella pneumoniae , Receptor Toll-Like 4 , Ratones Endogámicos C57BL , Neumonía Bacteriana/patología , Citocinas , Pulmón/patología , Disacáridos
4.
J Immunol ; 208(4): 785-792, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35115374

RESUMEN

Unlike the adaptive immune system, the innate immune system has classically been characterized as being devoid of memory functions. However, recent research shows that innate myeloid and lymphoid cells have the ability to retain memory of prior pathogen exposure and become primed to elicit a robust, broad-spectrum response to subsequent infection. This phenomenon has been termed innate immune memory or trained immunity. Innate immune memory is induced via activation of pattern recognition receptors and the actions of cytokines on hematopoietic progenitors and stem cells in bone marrow and innate leukocytes in the periphery. The trained phenotype is induced and sustained via epigenetic modifications that reprogram transcriptional patterns and metabolism. These modifications augment antimicrobial functions, such as leukocyte expansion, chemotaxis, phagocytosis, and microbial killing, to facilitate an augmented host response to infection. Alternatively, innate immune memory may contribute to the pathogenesis of chronic diseases, such as atherosclerosis and Alzheimer's disease.


Asunto(s)
Enfermedades Transmisibles/etiología , Susceptibilidad a Enfermedades , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata , Memoria Inmunológica , Animales , Biomarcadores , Enfermedades Transmisibles/metabolismo , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Susceptibilidad a Enfermedades/inmunología , Metabolismo Energético , Epigénesis Genética , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Humanos , Sistema Inmunológico/citología , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Especificidad de Órganos/genética , Especificidad de Órganos/inmunología , Receptores de Reconocimiento de Patrones/metabolismo , Transducción de Señal
5.
J Immunol ; 207(11): 2785-2798, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34740960

RESUMEN

Bacterial infections are a common and deadly threat to vulnerable patients. Alternative strategies to fight infection are needed. ß-Glucan, an immunomodulator derived from the fungal cell wall, provokes resistance to infection by inducing trained immunity, a phenomenon that persists for weeks to months. Given the durability of trained immunity, it is unclear which leukocyte populations sustain this effect. Macrophages have a life span that surpasses the duration of trained immunity. Thus, we sought to define the contribution of differentiated macrophages to trained immunity. Our results show that ß-glucan protects mice from Pseudomonas aeruginosa infection by augmenting recruitment of innate leukocytes to the site of infection and facilitating local clearance of bacteria, an effect that persists for more than 7 d. Adoptive transfer of macrophages, trained using ß-glucan, into naive mice conferred a comparable level of protection. Trained mouse bone marrow-derived macrophages assumed an antimicrobial phenotype characterized by enhanced phagocytosis and reactive oxygen species production in parallel with sustained enhancements in glycolytic and oxidative metabolism, increased mitochondrial mass, and membrane potential. ß-Glucan induced broad transcriptomic changes in macrophages consistent with early activation of the inflammatory response, followed by sustained alterations in transcripts associated with metabolism, cellular differentiation, and antimicrobial function. Trained macrophages constitutively secreted CCL chemokines and robustly produced proinflammatory cytokines and chemokines in response to LPS challenge. Induction of the trained phenotype was independent of the classic ß-glucan receptors Dectin-1 and TLR-2. These findings provide evidence that ß-glucan induces enhanced protection from infection by driving trained immunity in macrophages.


Asunto(s)
Memoria Inmunológica/efectos de los fármacos , Macrófagos/efectos de los fármacos , Sustancias Protectoras/farmacología , beta-Glucanos/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/inmunología , Femenino , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/inmunología , Memoria Inmunológica/inmunología , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
6.
Front Immunol ; 11: 1043, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32547553

RESUMEN

Critically ill, severely injured and high-risk surgical patients are vulnerable to secondary infections during hospitalization and after hospital discharge. Studies show that the mitochondrial function and oxidative metabolism of monocytes and macrophages are impaired during sepsis. Alternatively, treatment with microbe-derived ligands, such as monophosphoryl lipid A (MPLA), peptidoglycan, or ß-glucan, that interact with toll-like receptors and other pattern recognition receptors on leukocytes induces a state of innate immune memory that confers broad-spectrum resistance to infection with common hospital-acquired pathogens. Priming of macrophages with MPLA, CPG oligodeoxynucleotides (CpG ODN), or ß-glucan induces a macrophage metabolic phenotype characterized by mitochondrial biogenesis and increased oxidative metabolism in parallel with increased glycolysis, cell size and granularity, augmented phagocytosis, heightened respiratory burst functions, and more effective killing of microbes. The mitochondrion is a bioenergetic organelle that not only contributes to energy supply, biosynthesis, and cellular redox functions but serves as a platform for regulating innate immunological functions such as production of reactive oxygen species (ROS) and regulatory intermediates. This review will define current knowledge of leukocyte metabolic dysfunction during and after sepsis and trauma. We will further discuss therapeutic strategies that target leukocyte mitochondrial function and might have value in preventing or reversing sepsis- and trauma-induced immune dysfunction.


Asunto(s)
Infecciones/inmunología , Leucocitos/metabolismo , Mitocondrias/metabolismo , Sepsis/inmunología , Heridas y Lesiones/inmunología , Animales , Reprogramación Celular , Humanos , Inmunidad Innata , Leucocitos/inmunología , Estrés Oxidativo
7.
Front Immunol ; 11: 624272, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33613563

RESUMEN

Sepsis is a leading cause of death in intensive care units and survivors develop prolonged immunosuppression and a high incidence of recurrent infections. No definitive therapy exists to treat sepsis and physicians rely on supportive care including antibiotics, intravenous fluids, and vasopressors. With the rising incidence of antibiotic resistant microbes, it is becoming increasingly critical to discover novel therapeutics. Sepsis-induced leukocyte dysfunction and immunosuppression is recognized as an important contributor towards increased morbidity and mortality. Pre-clinical and clinical studies show that specific cell surface inhibitory immune checkpoint receptors and ligands including PD-1, PD-L1, CTLA4, BTLA, TIM3, OX40, and 2B4 play important roles in the pathophysiology of sepsis by mediating a fine balance between host immune competency and immunosuppression. Pre-clinical studies targeting the inhibitory effects of these immune checkpoints have demonstrated reversal of leukocyte dysfunction and improved host resistance of infection. Measurement of immune checkpoint expression on peripheral blood leukocytes may serve as a means of stratifying patients to direct individualized therapy. This review focuses on advances in our understanding of the role of immune checkpoints in the host response to infections, and the potential clinical application of therapeutics targeting the inhibitory immune checkpoint pathways for the management of septic patients.


Asunto(s)
Regulación de la Expresión Génica/inmunología , Proteínas de Punto de Control Inmunitario/inmunología , Tolerancia Inmunológica , Leucocitos/inmunología , Sepsis/inmunología , Humanos , Leucocitos/patología , Sepsis/patología , Sepsis/terapia
8.
Pharmacol Res ; 150: 104502, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31689522

RESUMEN

Infectious diseases remain a threat to critically ill patients, particularly with the rise of antibiotic-resistant bacteria. Septic shock carries a mortality of up to ∼40% with no compelling evidence of promising therapy to reduce morbidity or mortality. Septic shock survivors are also prone to nosocomial infections. Treatment with toll-like receptor 4 (TLR4) agonists have demonstrated significant protection against common nosocomial pathogens in various clinically relevant models of infection and septic shock. TLR4 agonists are derived from a bacteria cell wall or synthesized de novo, and more recently novel small molecule TLR4 agonists have also been developed. TLR4 agonists augment innate immune functions including expansion and recruitment of innate leukocytes to the site of infection. Recent studies demonstrate TLR4-induced leukocyte metabolic reprogramming of cellular metabolism to improve antimicrobial function. Metabolic changes include sustained augmentation of macrophage glycolysis, mitochondrial function, and tricarboxylic acid cycle flux. These findings set the stage for the use of TLR4 agonists as standalone therapeutic agents or antimicrobial adjuncts in patient populations vulnerable to nosocomial infections.


Asunto(s)
Adyuvantes Inmunológicos/uso terapéutico , Resistencia a la Enfermedad/inmunología , Receptor Toll-Like 4/agonistas , Animales , Humanos , Inmunidad Innata , Control de Infecciones , Infecciones/inmunología , Receptor Toll-Like 4/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA