Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Lifestyle Genom ; 16(1): 124-138, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37473740

RESUMEN

INTRODUCTION: Rate-limiting enzymes (RLEs) are innate slow points in metabolic pathways, and many function in bio-processes related to nutrient sensing. Many RLEs carry causal mutations relevant to inherited metabolic disorders. Because the activity of RLEs in cardiovascular health is poorly characterized, our objective was to assess their involvement in cardiometabolic health and disease and where altered biophysical and biochemical functions can promote disease. METHODS: A dataset of 380 human RLEs was compared to protein and gene datasets for factors likely to contribute to cardiometabolic disease, including proteins showing significant age-related altered expression in blood and genetic loci with variants that associate with common cardiometabolic phenotypes. The biochemical reactions catalyzed by RLEs were evaluated for metabolites enriched in RLE subsets associating with various cardiometabolic phenotypes. Most significance tests were based on Z-score enrichment converted to p values with a normal distribution function. RESULTS: Of 380 RLEs analyzed, 112 function in mitochondria, and 53 are assigned to inherited metabolic disorders. There was a depletion of RLE proteins known as aging biomarkers. At the gene level, RLEs were assessed for common genetic variants that associated with important cardiometabolic traits of LDL-cholesterol or any of the five outcomes pertinent to metabolic syndrome. This revealed several RLEs with links to cardiometabolic traits, from a minimum of 26 for HDL-cholesterol to a maximum of 45 for plasma glucose. Analysis of these GWAS-linked RLEs for enrichment of the molecular constituents of the catalyzed reactions disclosed a number of significant phenotype-metabolite links. These included blood pressure with acetate (p = 2.2 × 10-4) and NADP+ (p = 0.0091), plasma HDL-cholesterol and triglyceride with diacylglycerol (p = 2.6 × 10-5, 6.4 × 10-5, respectively) and diolein (p = 2.2 × 10-6, 5.9 × 10-6), and waist circumference with d-glucosamine-6-phosphate (p = 1.8 × 10-4). CONCLUSION: In the context of cardiometabolic health, aging, and disease, these results highlight key diet-derived metabolites that are central to specific rate-limited processes that are linked to cardiometabolic health. These metabolites include acetate and diacylglycerol, pertinent to blood pressure and triglycerides, respectively, as well as diacylglycerol and HDL-cholesterol.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedades Metabólicas , Humanos , Diglicéridos , Enfermedades Cardiovasculares/genética , Triglicéridos , HDL-Colesterol , Enfermedades Metabólicas/genética , Envejecimiento/genética , Acetatos
2.
Front Nutr ; 8: 729822, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34595201

RESUMEN

Sweet dessert watermelon (Citrullus lanatus) is one of the most important vegetable crops consumed throughout the world. The chemical composition of watermelon provides both high nutritional value and various health benefits. The present manuscript introduces a catalog of 1,679 small molecules occurring in the watermelon and their cheminformatics analysis for diverse features. In this catalog, the phytochemicals are associated with the literature describing their presence in the watermelon plant, and when possible, concentration values in various plant parts (flesh, seeds, leaves, roots, rind). Also cataloged are the chemical classes, molecular weight and formula, chemical structure, and certain physical and chemical properties for each phytochemical. In our view, knowing precisely what is in what we eat, as this catalog does for watermelon, supports both the rationale for certain controlled feeding studies in the field of precision nutrition, and plant breeding efforts for the development of new varieties with enhanced concentrations of specific phytochemicals. Additionally, improved and comprehensive collections of natural products accessible to the public will be especially useful to researchers in nutrition, cheminformatics, bioinformatics, and drug development, among other disciplines.

3.
Analyst ; 144(17): 5108-5116, 2019 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-31373337

RESUMEN

We report here the influence of antibody immobilization strategy for protein immunosensors on screen printed carbon electrode arrays in terms of antibody binding activity, analytical sensitivity, limit of detection, and stability. Horseradish peroxidase (HRP) was the model analyte with anti-HRP immobilized on the sensors, and HRP activity was used for detection. Covalently immobilized anti-HRP antibodies on electrodes coated with chitosan, electrochemically reduced graphene oxide (rGO), and dense gold nanoparticle (AuNP) films had only 20-30% of the total immobilized antibodies active for binding. Active antibodies increased to 60% with passively adsorbed antibodies on bare electrodes, to 85% with oriented antibodies using protein A covalently immobilized on AuNP-coated carbon electrode, and to 98% when attached to protein A passively adsorbed onto bare electrodes. Passively adsorbed antibodies on bare electrodes lost activity in 1-2 days, but antibodies immobilized using other strategies remained relatively stable after 5 days. Covalent immobilization gave limits of detection (LOD) of 40 fg mL-1, while passively adsorbed antibodies or protein A on carbon electrodes had LODs 4-8 fg mL-1, but were unstable. Sensitivity was highest for antibodies covalently attached to AuNP electrodes (2.40 nA per log pg per mL) that also had highest antibody coverage, and decreased slightly when protein A on AuNP was used to orient antibodies. Passively adsorbed antibodies and oriented antibodies on protein A gave slightly lower sensitivities. Immobilization strategy or antibody orientation did not have a significant effect on LOD, but dynamic range increased as the number of active antibodies on sensor surfaces increased.


Asunto(s)
Anticuerpos Inmovilizados/química , Carbono/química , Técnicas Biosensibles/métodos , Quitosano/química , Técnicas Electroquímicas/métodos , Electrodos , Grafito/química , Peroxidasa de Rábano Silvestre/química , Inmunoensayo/métodos , Límite de Detección , Oxidación-Reducción , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA