Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
J Immunol ; 212(9): 1428-1441, 2024 May 01.
Article En | MEDLINE | ID: mdl-38466035

Endometriosis is a chronic inflammatory disease in which endometrial-like tissue grows ectopically, resulting in pelvic pain and infertility. IL-23 is a key contributor in the development and differentiation of TH17 cells, driving TH17 cells toward a pathogenic profile. In a variety of inflammatory and autoimmune disorders, TH17 cells secrete proinflammatory cytokines, including IL-17, contributing to disease pathophysiology. Our studies and others have implicated IL-17 and TH17 cell dysregulation in endometriosis, which is associated with disease severity. In this article, we address whether IL-23-driven TH17 cells contribute to cardinal features of lesion proliferation, vascularization, and inflammation in endometriosis using patient samples, representative cell lines, and our established mouse model of endometriosis. The results indicated dysregulated expression of key genes in the IL-23/TH17 axis in patient ectopic and eutopic endometrial samples and increased IL-23 protein in patient plasma compared with controls. In vitro studies using primary human TH cells determined that rIL-23 mixture treatment increased pathogenic TH17 cell frequency. Similarly, rIL-23 treatment of cell lines (12Z cells, EECCs, HUVECs, and hESCs) representative of the endometriotic lesion microenvironment increased cytokines and growth factors, which play a role in lesion establishment and maintenance. In a syngeneic mouse model of endometriosis, rIL-23 treatment altered numbers of myeloid and T cell subsets in peritoneal fluid and increased giant cells within the lesion. Lesions from rIL-23-treated mice did not reveal significant alterations in proliferation/vascularization, although trends of increased proliferation and vascularization were observed. Collectively, these findings provide insights into the impact of the IL-23/TH17 axis on local immune dysfunction and broadly on endometriosis pathophysiology.


Endometriosis , Interleukin-23 , Th17 Cells , Animals , Female , Humans , Mice , Cytokines/metabolism , Endometriosis/metabolism , Endometriosis/pathology , Endometrium/metabolism , Endometrium/pathology , Interleukin-17/metabolism , Interleukin-23/metabolism , Th17 Cells/metabolism
2.
Front Immunol ; 13: 961599, 2022.
Article En | MEDLINE | ID: mdl-36016927

Endometriosis is an estrogen dependent, chronic inflammatory disease characterized by the growth of endometrial lining outside of the uterus. Mast cells have emerged as key players in regulating not only allergic responses but also other mechanisms such as angiogenesis, fibrosis, and pain. The influence of estrogen on mast cell function has also been recognized as a potential factor driving disease pathophysiology in number of allergic and chronic inflammatory conditions. However, precise information is lacking on the cross talk between endocrine and immune factors within the endometriotic lesions and whether that contributes to the involvement of mast cells with disease pathophysiology. In this study, we observed a significant increase in mast cell numbers within endometriotic lesions compared to matched eutopic endometrium from the same patients. Compared to eutopic endometrium, endometriotic lesions had significantly higher levels of stem cell factor (SCF), a potent growth factor critical for mast cell expansion, differentiation, and survival for tissue resident mast cells. Targeted mRNA Q-PCR array revealed that the endometriotic lesions harbour microenvironment (upregulation of CPA3, VCAM1, CCL2, CMA1, CCR1, and KITLG) that is conducive to mast cells recruitment and subsequent differentiation. To examine cross-talk of mast cells within the endometriotic lesion microenvironment, endometriotic epithelial cells (12Z) and endometrial stromal cells (hESC) incubated with mast cell-conditioned media showed significantly increased production of pro-inflammatory and chemokinetic cytokines. To further understand the impact of estrogen on mast cells in endometriosis, we induced endometriosis in C57BL/6 mice. Mature mast cells were significantly higher in peritoneal fluid of estrogen-treated mice compared to untreated mice within the sham operated groups. Mouse endometriotic lesion tissue revealed several genes (qRT-PCR) relevant in mast cell biology significantly upregulated in the estrogen treated, endometriosis-induced group compared to control endometrium. The endometriotic lesions from estrogen treated mice also had significantly higher density of Alcian blue stained mast cells compared to untreated lesions or control endometrium. Collectively, these findings suggest that endometriotic lesions provide a microenvironment necessary for recruitment and differentiation of mast cells. In turn, mast cells potentially release pro-inflammatory mediators that contribute to chronic pelvic pain and endometriosis disease progression.


Endometriosis , Animals , Cell Count , Endometriosis/pathology , Estrogens , Female , Humans , Mast Cells/metabolism , Mice , Mice, Inbred C57BL
3.
F S Sci ; 2(4): 419-430, 2021 11.
Article En | MEDLINE | ID: mdl-35559864

OBJECTIVE: To determine the involvement of the endocannabinoid (EC) family member in the pathophysiology of endometriosis (EMS). DESIGN: Mass spectrometry analysis of plasma and tissue samples from patients with EMS, controls, and a mouse model of EMS and messenger RNA and immunohistochemistry analysis of the samples from patients with EMS and controls. SETTING: Academic teaching hospital and university. PATIENT(S): Patients with EMS and healthy fertile control subjects. INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): Endocannabinoid analysis in patient plasma, EMS lesions, and healthy endometrial samples. RESULT(S): Circulating ECs were detected in the plasma samples, whereas no significant changes were observed in patients with EMS compared with healthy fertile controls. However, the palmitoylethanolamide levels were significantly higher in the EMS lesions than in the endometrium from patients with EMS. Similarly, genes involved in the EC signaling pathways were differentially expressed in the EMS lesions. Analysis of cannabinoid 1 and 2 receptors in the EMS lesions revealed a significantly lower cannabinoid 2 receptor expression, whereas no significant changes were observed in cannabinoid 1 receptor expression compared with those in the endometrium from both patients with EMS and healthy fertile controls. The palmitoylethanolamide levels were significantly elevated in plasma from EMS mice compared with that from sham controls and in EMS lesions compared with uterine samples. CONCLUSION(S): Together, we provide evidence toward dysregulation of members of the ECs in both patients with EMS and the mouse model of EMS. These findings will advance the knowledge of the role of ECs in EMS and their potential implications as therapeutic targets.


Cannabinoids , Endometriosis , Animals , Cannabinoids/metabolism , Disease Models, Animal , Endocannabinoids/metabolism , Endometriosis/genetics , Endometrium/metabolism , Family , Female , Humans , Mice , Receptors, Cannabinoid/genetics
...