Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Comput Biol ; 19(12): e1011662, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38055683

RESUMEN

Dengue virus (DENV) is a public health challenge across the tropics and subtropics. Currently, there is no licensed prophylactic or antiviral treatment for dengue. The novel DENV inhibitor JNJ-1802 can significantly reduce viral load in mice and non-human primates. Here, using a mechanistic viral kinetic model calibrated against viral RNA data from experimental in-vitro infection studies, we assess the in-vitro inhibitory effect of JNJ-1802 by characterising infection dynamics of two DENV-2 strains in the absence and presence of different JNJ-1802 concentrations. Viral RNA suppression to below the limit of detection was achieved at concentrations of >1.6 nM, with a median concentration exhibiting 50% of maximal inhibitory effect (IC50) of 1.23x10-02 nM and 1.28x10-02 nM for the DENV-2/RL and DENV-2/16681 strains, respectively. This work provides important insight into the in-vitro inhibitory effect of JNJ-1802 and presents a first step towards a modelling framework to support characterization of viral kinetics and drug effect across different host systems.


Asunto(s)
Virus del Dengue , Dengue , Animales , Ratones , ARN Viral/genética , Dengue/tratamiento farmacológico , Antivirales/farmacología , Replicación Viral
2.
PLoS Comput Biol ; 19(11): e1011666, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38011203

RESUMEN

The extent to which dengue virus has been circulating globally and especially in Africa is largely unknown. Testing available blood samples from previous cross-sectional serological surveys offers a convenient strategy to investigate past dengue infections, as such serosurveys provide the ideal data to reconstruct the age-dependent immunity profile of the population and to estimate the average per-capita annual risk of infection: the force of infection (FOI), which is a fundamental measure of transmission intensity. In this study, we present a novel methodological approach to inform the size and age distribution of blood samples to test when samples are acquired from previous surveys. The method was used to inform SERODEN, a dengue seroprevalence survey which is currently being conducted in Ghana among other countries utilizing samples previously collected for a SARS-CoV-2 serosurvey. The method described in this paper can be employed to determine sample sizes and testing strategies for different diseases and transmission settings.


Asunto(s)
Dengue , SARS-CoV-2 , Humanos , Estudios Transversales , Estudios Seroepidemiológicos , Ghana/epidemiología , Anticuerpos Antivirales
3.
BMC Infect Dis ; 23(1): 708, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37864153

RESUMEN

BACKGROUND: Aedes (Stegomyia)-borne diseases are an expanding global threat, but gaps in surveillance make comprehensive and comparable risk assessments challenging. Geostatistical models combine data from multiple locations and use links with environmental and socioeconomic factors to make predictive risk maps. Here we systematically review past approaches to map risk for different Aedes-borne arboviruses from local to global scales, identifying differences and similarities in the data types, covariates, and modelling approaches used. METHODS: We searched on-line databases for predictive risk mapping studies for dengue, Zika, chikungunya, and yellow fever with no geographical or date restrictions. We included studies that needed to parameterise or fit their model to real-world epidemiological data and make predictions to new spatial locations of some measure of population-level risk of viral transmission (e.g. incidence, occurrence, suitability, etc.). RESULTS: We found a growing number of arbovirus risk mapping studies across all endemic regions and arboviral diseases, with a total of 176 papers published 2002-2022 with the largest increases shortly following major epidemics. Three dominant use cases emerged: (i) global maps to identify limits of transmission, estimate burden and assess impacts of future global change, (ii) regional models used to predict the spread of major epidemics between countries and (iii) national and sub-national models that use local datasets to better understand transmission dynamics to improve outbreak detection and response. Temperature and rainfall were the most popular choice of covariates (included in 50% and 40% of studies respectively) but variables such as human mobility are increasingly being included. Surprisingly, few studies (22%, 31/144) robustly tested combinations of covariates from different domains (e.g. climatic, sociodemographic, ecological, etc.) and only 49% of studies assessed predictive performance via out-of-sample validation procedures. CONCLUSIONS: Here we show that approaches to map risk for different arboviruses have diversified in response to changing use cases, epidemiology and data availability. We identify key differences in mapping approaches between different arboviral diseases, discuss future research needs and outline specific recommendations for future arbovirus mapping.


Asunto(s)
Aedes , Infecciones por Arbovirus , Arbovirus , Fiebre Chikungunya , Dengue , Fiebre Amarilla , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Infecciones por Arbovirus/epidemiología , Fiebre Amarilla/epidemiología , Mosquitos Vectores , Dengue/epidemiología
4.
J R Soc Interface ; 20(205): 20230187, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553993

RESUMEN

We use viral kinetic models fitted to viral load data from in vitro studies to explain why the SARS-CoV-2 Omicron variant replicates faster than the Delta variant in nasal cells, but slower than Delta in lung cells, which could explain Omicron's higher transmission potential and lower severity. We find that in both nasal and lung cells, viral infectivity is higher for Omicron but the virus production rate is higher for Delta, with an estimated approximately 200-fold increase in infectivity and 100-fold decrease in virus production when comparing Omicron with Delta in nasal cells. However, the differences are unequal between cell types, and ultimately lead to the basic reproduction number and growth rate being higher for Omicron in nasal cells, and higher for Delta in lung cells. In nasal cells, Omicron alone can enter via a TMPRSS2-independent pathway, but it is primarily increased efficiency of TMPRSS2-dependent entry which accounts for Omicron's increased activity. This work paves the way for using within-host mathematical models to understand the transmission potential and severity of future variants.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Número Básico de Reproducción , Cinética
5.
Commun Biol ; 2: 273, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31372512

RESUMEN

Fine-scale geographic variation in the transmission intensity of mosquito-borne diseases is primarily caused by variation in the density of female adult mosquitoes. Therefore, an understanding of fine-scale mosquito population dynamics is critical to understanding spatial heterogeneity in disease transmission and persistence at those scales. However, mathematical models of dengue and malaria transmission, which consider the dynamics of mosquito larvae, generally do not account for the fragmented structure of larval breeding sites. Here, we develop a stochastic metapopulation model of mosquito population dynamics and explore the impact of accounting for breeding site fragmentation when modelling fine-scale mosquito population dynamics. We find that, when mosquito population densities are low, fragmentation can lead to a reduction in population size, with population persistence dependent on mosquito dispersal and features of the underlying landscape. We conclude that using non-spatial models to represent fine-scale mosquito population dynamics may substantially underestimate the stochastic volatility of those populations.


Asunto(s)
Culicidae/fisiología , Modelos Teóricos , Animales , Femenino , Dinámica Poblacional , Reproducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA