Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
Front Pharmacol ; 15: 1412397, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948457

RESUMEN

Background: "Kratom" refers to an array of bioactive products derived from Mitragyna speciosa, a tree indigenous to Southeast Asia. Most kratom consumers report analgesic and stimulatory effects, and common reasons for use are to address mental and physical health needs, manage pain, and to reduce use of other substances. Natural-history studies and survey studies suggest that many kratom consumers perceive benefits from those uses, but such studies are unlikely to capture the full range of kratom-use experiences. Methods: We collected text data from Reddit posts from 2020-2022 to qualitatively examine conceptualizations, motivations, effects, and consequences associated with kratom use among people posting to social media. Reddit posts mentioning kratom were studied using template thematic analysis, which included collecting descriptions of kratom product types and use practices. Network analyses of coded themes was performed to examine independent relationships among themes, and between themes and product types. Results: Codes were applied to 329 of the 370 posts that comprised the final sample; 134 posts contained kratom product descriptions. As Reddit accounts were functionally anonymous, demographic estimates were untenable. Themes included kratom physical dependence (tolerance, withdrawal, or use to avoid withdrawal), perceived addiction (net detrimental effects on functioning), and quitting. Extract products were positively associated with reports of perceived addiction, dependence, and experiences of quitting kratom. Many used kratom for energy and self-treatment of pain, fatigue, and problems associated with opioid and alcohol; they perceived these uses as effective. Consumers expressed frustrations about product inconsistencies and lack of product information. Conclusion: As in previous studies, kratom was deemed helpful for some and a hindrance to others, but we also found evidence of notable negative experiences with kratom products that have not been well documented in surveys. Daily kratom use may produce mild-moderate physical dependence, with greater severity being possibly more common with concentrated extracts; however, there are currently no human laboratory studies of concentrated kratom extracts. Such studies, and detailed kratom product information, are needed to help inform consumer decision-making.

2.
Anal Chem ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38982936

RESUMEN

Multimodal imaging analyses of dosed tissue samples can provide more comprehensive insights into the effects of a therapeutically active compound on a target tissue compared to single-modal imaging. For example, simultaneous spatial mapping of pharmaceutical compounds and endogenous macromolecule receptors is difficult to achieve in a single imaging experiment. Herein, we present a multimodal workflow combining imaging mass spectrometry with immunohistochemistry (IHC) fluorescence imaging and brightfield microscopy imaging. Imaging mass spectrometry enables direct mapping of pharmaceutical compounds and metabolites, IHC fluorescence imaging can visualize large proteins, and brightfield microscopy imaging provides tissue morphology information. Single-cell resolution images are generally difficult to acquire using imaging mass spectrometry but are readily acquired with IHC fluorescence and brightfield microscopy imaging. Spatial sharpening of mass spectrometry images would thus allow for higher fidelity coregistration with other higher-resolution microscopy images. Imaging mass spectrometry spatial resolution can be predicted to a finer value via a computational image fusion workflow, which models the relationship between the intensity values in the mass spectrometry image and the features of a high-spatial resolution microscopy image. As a proof of concept, our multimodal workflow was applied to brain tissue extracted from a Sprague-Dawley rat dosed with a kratom alkaloid, corynantheidine. Four candidate mathematical models, including linear regression, partial least-squares regression, random forest regression, and two-dimensional convolutional neural network (2-D CNN), were tested. The random forest and 2-D CNN models most accurately predicted the intensity values at each pixel as well as the overall patterns of the mass spectrometry images, while also providing the best spatial resolution enhancements. Herein, image fusion enabled predicted mass spectrometry images of corynantheidine, GABA, and glutamine to approximately 2.5 µm spatial resolutions, a significant improvement compared to the original images acquired at 25 µm spatial resolution. The predicted mass spectrometry images were then coregistered with an H&E image and IHC fluorescence image of the µ-opioid receptor to assess colocalization of corynantheidine with brain cells. Our study also provides insights into the different evaluation parameters to consider when utilizing image fusion for biological applications.

3.
Drug Test Anal ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747129

RESUMEN

Villocarine A is a bioactive indole alkaloid isolated from the Uncaria genus. It has demonstrated vasorelaxation activity and potential to protect the central nervous system. To identify the pharmacokinetic properties of villocarine A, a series of in vitro and in vivo studies have been performed. Villocarine A was found to be highly permeable (15.6 ± 1.6*10-6 cm/s) across human colorectal adenocarcinoma cell monolayer with high protein binding (>91%) in both rat and human plasma. Hepatic extraction ratio of villocarine A was 0.1 in pooled rat liver and 0.2 in human liver microsomes and was found stable in rat plasma at 37°C. Due to the high permeability and low rate of metabolism properties, villocarine A was initially considered suitable for preclinical development and an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for quantification (linearity: 1-150 ng/ml) in rat plasma was developed and validated for in vivo studies. Essential pharmacokinetic parameters included the volume of distribution and clearance of villocarine A, which were found to be 100.3 ± 15.6 L/kg and 8.2 ± 1.1 L/h/kg, respectively, after intravenous administration in rats. Following oral dosing, villocarine A exhibited rapid absorption as the maximum plasma concentration (53.2 ± 10.4 ng/ml) occurred at 0.3 ± 0.1 h, post-dose. The absolute oral bioavailability of villocarine A was 16.8 ± 0.1%. To our knowledge, this was the first pharmacokinetic study of villocarine A, which demonstrated the essential pharmacokinetic properties of villocarine A: large volume distribution, high clearance, and low oral bioavailability in rats.

4.
bioRxiv ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38559145

RESUMEN

Multi-modal imaging analyses of dosed tissue samples can provide more comprehensive insight into the effects of a therapeutically active compound on a target tissue compared to single-modal imaging. For example, simultaneous spatial mapping of pharmaceutical compounds and endogenous macromolecule receptors is difficult to achieve in a single imaging experiment. Herein, we present a multi-modal workflow combining imaging mass spectrometry with immunohistochemistry (IHC) fluorescence imaging and brightfield microscopy imaging. Imaging mass spectrometry enables direct mapping of pharmaceutical compounds and metabolites, IHC fluorescence imaging can visualize large proteins, and brightfield microscopy imaging provides tissue morphology information. Single-cell resolution images are generally difficult to acquire using imaging mass spectrometry, but are readily acquired with IHC fluorescence and brightfield microscopy imaging. Spatial sharpening of mass spectrometry images would thus allow for higher fidelity co-registration with higher resolution microscopy images. Imaging mass spectrometry spatial resolution can be predicted to a finer value via a computational image fusion workflow, which models the relationship between the intensity values in the mass spectrometry image and the features of a high spatial resolution microscopy image. As a proof of concept, our multi-modal workflow was applied to brain tissue extracted from a Sprague Dawley rat dosed with a kratom alkaloid, corynantheidine. Four candidate mathematical models including linear regression, partial least squares regression (PLS), random forest regression, and two-dimensional convolutional neural network (2-D CNN), were tested. The random forest and 2-D CNN models most accurately predicted the intensity values at each pixel as well as the overall patterns of the mass spectrometry images, while also providing the best spatial resolution enhancements. Herein, image fusion enabled predicted mass spectrometry images of corynantheidine, GABA, and glutamine to approximately 2.5 µm spatial resolutions, a significant improvement compared to the original images acquired at 25 µm spatial resolution. The predicted mass spectrometry images were then co-registered with an H&E image and IHC fluorescence image of the µ-opioid receptor to assess co-localization of corynantheidine with brain cells. Our study also provides insight into the different evaluation parameters to consider when utilizing image fusion for biological applications.

5.
Talanta ; 274: 125923, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569366

RESUMEN

Mitragyna speciosa, more commonly known as kratom, has emerged as an alternative to treat chronic pain and addiction. However, the alkaloid components of kratom, which are the major contributors to kratom's pharmaceutical properties, have not yet been fully investigated. In this study, matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry was used to map the biodistribution of three alkaloids (corynantheidine, mitragynine, and speciogynine) in rat brain tissues. The alkaloids produced three main ion types during MALDI analysis: [M + H]+, [M - H]+, and [M - 3H]+. Contrary to previous reports suggesting that the [M - H]+ and [M - 3H]+ ion types form during laser ablation, these ion types can also be produced during the MALDI matrix application process. Several strategies are proposed to accurately map the biodistribution of the alkaloids. Due to differences in the relative abundances of the ions in different biological regions of the tissue, differences in ionization efficiencies of the ions, and potential overlap of the [M - H]+ and [M - 3H]+ ion types with endogenous metabolites of the same empirical formula, a matrix that mainly produces the [M + H]+ ion type is optimal for accurate mapping of the alkaloids. Alternatively, the most abundant ion type can be mapped or the intensities of all ion types can be summed together to generate a composite image. The accuracy of each of these approaches is explored and validated.


Asunto(s)
Alcaloides , Encéfalo , Mitragyna , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Animales , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Mitragyna/química , Ratas , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Alcaloides/farmacocinética , Alcaloides/análisis , Alcaloides/química , Masculino , Iones/química , Distribución Tisular , Ratas Sprague-Dawley
6.
Eur J Med Chem ; 269: 116330, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38522114

RESUMEN

The Neuropeptide FF (NPFF) receptor system is known to modulate opioid actions and has been shown to mediate opioid-induced hyperalgesia and tolerance. The lack of subtype selective small molecule compounds has hampered further exploration of the pharmacology of this receptor system. The vast majority of available NPFF ligands possess a highly basic guanidine group, including our lead small molecule, MES304. Despite providing strong receptor binding, the guanidine group presents a potential pharmacokinetic liability for in vivo pharmacological tool development. Through structure-activity relationship exploration, we were able to modify our lead molecule MES304 to arrive at guanidine-free NPFF ligands. The novel piperidine analogues 8b and 16a are among the few non-guanidine based NPFF ligands known in literature. Both compounds displayed nanomolar NPFF-R binding affinity approaching that of the parent molecule. Moreover, while MES304 was non-subtype selective, these two analogues presented new starting points for subtype selective scaffolds, whereby 8b displayed a 15-fold preference for NPFF1-R, and 16a demonstrated an 8-fold preference for NPFF2-R. Both analogues showed no agonist activity on either receptor subtype in the in vitro functional activity assay, while 8b displayed antagonistic properties at NPFF1-R. The calculated physicochemical properties of 8b and 16a were also shown to be more favorable for in vivo tool design. These results indicate the possibility of developing potent, subtype selective NPFF ligands devoid of a guanidine functionality.


Asunto(s)
Analgésicos Opioides , Guanidinas , Oligopéptidos , Analgésicos Opioides/farmacología , Guanidina/farmacología , Ligandos , Piperidinas/farmacología
7.
Traffic Inj Prev ; 25(4): 594-603, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38497810

RESUMEN

OBJECTIVES: Despite widespread kratom use, there is a lack of knowledge regarding its effects on driving. We evaluated the self-reported driving behaviors of kratom consumers and assessed their simulated-driving performance after self-administering kratom products. METHODS: We present results from: 1) a remote, national study of US adults who regularly use kratom, and 2) an in-person substudy from which we re-recruited participants. In the national study (N = 357), participants completed a detailed survey and a 15-day ecological momentary assessment (EMA) that monitored naturalistic kratom use. For the remote study, outcomes were self-reported general and risky driving behaviors, perceived impairment, and driving confidence following kratom administration. For the in-person substudy, 10 adults consumed their typical kratom products and their driving performance on a high-fidelity driving simulator pre- and post-kratom administration was evaluated. RESULTS: Over 90% of participants surveyed self-reported driving under the influence of kratom. Most reported low rates of risky driving behavior and expressed high confidence in their driving ability after taking kratom. This was consistent with EMA findings: participants reported feeling confident in their driving ability and perceived little impairment within 15-180 min after using kratom. In the in-person substudy, there were no significant changes in simulated driving performance after taking kratom. CONCLUSIONS: Using kratom before driving appears routine, however, self-reported and simulated driving findings suggest kratom effects at self-selected doses among regular kratom consumers do not produce significant changes in subjective and objective measures of driving impairment. Research is needed to objectively characterize kratom's impact on driving in regular and infrequent consumers.


Asunto(s)
Mitragyna , Adulto , Humanos , Estudios Transversales , Evaluación Ecológica Momentánea , Accidentes de Tránsito , Autoinforme
8.
Pharmaceutics ; 16(3)2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38543213

RESUMEN

Kratom and cannabidiol products are used to self-treat a variety of conditions, including anxiety and pain, and to elevate mood. Research into the individual pharmacokinetic properties of commercially available kratom and cannabidiol products has been performed, but there are no studies on coadministration of these products. Surveys of individuals with kratom use history indicate that cannabidiol use is one of the strongest predictors of both lifetime and past month kratom use. The purpose of this study was to determine if there are changes in pharmacokinetic properties when commercially available kratom and cannabidiol products are administered concomitantly. It was found that with concomitant administration of cannabidiol, there was a 2.8-fold increase in the exposure of the most abundant kratom alkaloid, mitragynine, and increases in the exposure of other minor alkaloids. The results of this work suggest that with cannabidiol coadministration, the effects of kratom may be both delayed and increased due to a delay in time to reach maximum plasma concentration and higher systemic exposure of the psychoactive alkaloids found in kratom.

9.
J Addict Med ; 18(2): 144-152, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38174871

RESUMEN

INTRODUCTION: Use of kratom has outpaced systematic study of its effects, with most studies reliant on retrospective self-report. METHODS: We aimed to assess acute effects following kratom use in adults who use regularly, and quantify alkaloids in the products, urine, and plasma. Between July and November 2022, 10 adults came to our clinic and orally self-administered their typical kratom dose; blinding procedures were not used. Physiological measures included blood pressure, respiratory rate, heart rate, pulse oximetry, temperature, and pupil diameter. Subjective outcomes included Subjective Opioid Withdrawal Scale, Addiction Research Center Inventory, and Drug Effects Questionnaire. Psychomotor performance was also assessed. RESULTS: Participants were 6 men and 4 women, mean age 41.2 years. Nine were non-Hispanic White; 1 was biracial. They had used kratom for 6.6 years (SD, 3.8 years) on average (2.0-14.1). Sessions were 190.89 minutes on average (SD, 15.10 minutes). Mean session dose was 5.16 g (median, 4.38 g; range, 1.1-10.9 g) leaf powder. Relative to baseline, physiological changes were minor. However, pupil diameter decreased (right, b = -0.70, P < 0.01; left, b = -0.73, P < 0.01) 40-80 minutes postdose and remained below baseline >160 minutes. Subjective Opioid Withdrawal Scale pre-dosing was mild (5.5 ± 3.3) and decreased postdose (b = [-4.0, -2.9], P < 0.01). Drug Effects Questionnaire "feeling effects" increased to 40/100 (SD, 30.5) within 40 minutes and remained above baseline 80 to 120 minutes (b = 19.0, P = 0.04), peaking at 72.7/100; 6 participants rated euphoria as mild on the Addiction Research Center Inventory Morphine-Benzedrine-scale. Psychomotor performance did not reliably improve or deteriorate postdosing. CONCLUSIONS: Among regular consumers, we found few clinically significant differences pre- and post-kratom dosing. Alkaloidal contents in products were within expected ranges.


Asunto(s)
Alcaloides , Mitragyna , Síndrome de Abstinencia a Sustancias , Masculino , Adulto , Humanos , Femenino , Analgésicos Opioides/uso terapéutico , Estudios Retrospectivos , Narcóticos/uso terapéutico , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico
10.
JAMA Netw Open ; 7(1): e2353401, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38277146

RESUMEN

Importance: Kratom products, which are sold legally in most of the US, contain alkaloids with opioidergic, adrenergic, and serotonergic activity. Millions of people use kratom to relieve pain, improve mood, or self-manage substance use disorders (SUDs). Kratom use has primarily been examined via surveys, in which recall biases among satisfied users may lead to minimization of transient negative outcomes. Further prospective study of kratom use, such as with ecological momentary assessment (EMA), is needed. Objective: To characterize proximal motivators, effects, and patterns of kratom use and to assess whether use frequency is associated with motivations, effects, past-year criteria for SUD for kratom (KUD), or other substance use. Design, Setting, and Participants: For this prospective cross-sectional study, an intensive longitudinal smartphone-based EMA in which participants' current behaviors and experiences were repeatedly sampled in real time was conducted between July 1 and October 31, 2022. Participants comprised a convenience sample of US adults who used kratom at least 3 days per week for at least 4 weeks at the time of online screening. Criteria for past-year KUD were based on the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. Data analysis was performed between November 2022 and November 2023. Exposure: The exposure was 13 401 kratom-use events across 15 days. Main Outcomes and Measures: A baseline survey covering demographics, health, kratom attitudes and behaviors, use motivations, other substance use, and KUD was administered before EMA. Data for the following EMA entries were then collected: event-contingent entries for kratom use (product, dose, and proximal motivations), follow-up entries (short-term effects and consequences of use events), random-prompt entries (mood), beginning-of-day entries (effects of kratom on sleep), and end-of-day entries (daily subjective descriptions of kratom effects). Bayesian regression was used to estimate means and credible intervals. Results: A total of 357 participants completed the EMA. Their mean (SD) age was 38.0 (11.1) years; more than half were men (198 [55.5%]). Participants reported overall motivators of use on the baseline survey that involved managing psychiatric and SUD problems, but proximal motivators evaluated during the EMA involved situation-specific needs such as increasing energy and productivity and decreasing pain. Acute effects were considered congruent with daily obligations. Use patterns, despite having some distinguishing features, were generally similar in their motivators and effects; participants used kratom predominantly during the daytime and seemed to find use frequencies that suited their needs. Higher use patterns were associated with symptoms of physical dependence (eg, withdrawal or tolerance). Co-used substances included caffeine, nicotine, vitamins, and cannabis. Conclusions and Relevance: Most participants in this study reported using kratom in a seemingly nonproblematic way. When such use appeared problematic, the key element was usually that withdrawal avoidance became a proximal motivator. Longitudinal studies examining changes in kratom use patterns and effects over time are needed.


Asunto(s)
Mitragyna , Trastornos Relacionados con Sustancias , Adulto , Femenino , Humanos , Masculino , Teorema de Bayes , Estudios Transversales , Evaluación Ecológica Momentánea , Motivación , Dolor/psicología , Estudios Prospectivos , Autoinforme , Trastornos Relacionados con Sustancias/psicología , Persona de Mediana Edad
11.
Expert Rev Clin Pharmacol ; 17(2): 131-142, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38217374

RESUMEN

INTRODUCTION: Kratom (Mitragyna speciosa) has generated substantial clinical and scientific interest as a complex natural product. Its predominant alkaloid mitragynine and several stereoisomers have been studied for activity in opioid, adrenergic, and serotonin receptors. While awaiting clinical trial results, the pre-clinical evidence suggests a range of potential therapeutic applications for kratom with careful consideration of potential adverse effects. AREAS COVERED: The focus of this review is on the pharmacology, pharmacokinetics, and potential drug-drug interactions of kratom and its individual alkaloids. A discussion on the clinical pharmacology and toxicology of kratom is followed by a summary of user surveys and the evolving concepts of tolerance, dependence, and withdrawal associated with kratom use disorder. EXPERT OPINION: With the increasing use of kratom in clinical practice, clinicians should be aware of the potential benefits and adverse effects associated with kratom. While many patients may benefit from kratom use with few or no reported adverse effects, escalating dose and increased use frequency raise the risk for toxic events in the setting of polysubstance use or development of a use disorder.


Asunto(s)
Productos Biológicos , Mitragyna , Farmacología Clínica , Humanos , Mitragyna/efectos adversos , Analgésicos Opioides/efectos adversos , Hojas de la Planta
13.
Exp Clin Psychopharmacol ; 32(2): 215-227, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37213182

RESUMEN

The botanical product commonly called "kratom" is still relatively novel to the United States. Like other natural products marketed as supplements, kratom is highly variable, both in terms of the alkaloids naturally occurring in kratom leaves and in terms of processing and formulation. Kratom products sold in the United States are not well-characterized, nor are daily use patterns among regular users. Surveys and case reports have comprised most of the literature on kratom use among humans. To advance our understanding of real-world kratom use, we developed a protocol for the remote study of regular kratom-using adults in the United States. Our study had three aspects implemented in one pool of participants nationwide: an in-depth online survey, 15 days of ecological momentary assessment (EMA) via smartphone app, and the collection and assay of the kratom products used by participants during EMA. Here, we describe these methods, which can be used to investigate myriad drugs or supplements. Recruiting, screening, and data collection occurred between July 20, 2022 and October 18, 2022. During this time, we demonstrated that these methods, while challenging from a logistical and staffing standpoint, are feasible and can produce high-quality data. The study achieved high rates of enrollment, compliance, and completion. Substances that are emerging or novel, but still largely legal, can be productively studied via nationwide EMA combined with assays of shipped product samples from participants. We discuss challenges and lessons learned so other investigators can adapt these methods. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Asunto(s)
Mitragyna , Adulto , Humanos , Estados Unidos , Encuestas y Cuestionarios , Evaluación Ecológica Momentánea
14.
Int J Mol Sci ; 24(21)2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-37958703

RESUMEN

The emergence of lethal coronaviruses follows a periodic pattern which suggests a recurring cycle of outbreaks. It remains uncertain as to when the next lethal coronavirus will emerge, though its eventual emergence appears to be inevitable. New mutations in evolving SARS-CoV-2 variants have provided resistance to current antiviral drugs, monoclonal antibodies, and vaccines, reducing their therapeutic efficacy. This underscores the urgent need to investigate alternative therapeutic approaches. Sigma receptors have been unexpectedly linked to the SARS-CoV-2 life cycle due to the direct antiviral effect of their ligands. Coronavirus-induced cell stress facilitates the formation of an ER-derived complex conducive to its replication. Sigma receptor ligands are believed to prevent the formation of this complex. Repurposing FDA-approved drugs for COVID-19 offers a timely and cost-efficient strategy to find treatments with established safety profiles. Notably, diphenhydramine, a sigma receptor ligand, is thought to counteract the virus by inhibiting the creation of ER-derived replication vesicles. Furthermore, lactoferrin, a well-characterized immunomodulatory protein, has shown antiviral efficacy against SARS-CoV-2 both in laboratory settings and in living organisms. In the present study, we aimed to explore the impact of sigma receptor ligands on SARS-CoV-2-induced mortality in ACE2-transgenic mice. We assessed the effects of an investigational antiviral drug combination comprising a sigma receptor ligand and an immunomodulatory protein. Mice treated with sigma-2 receptor ligands or diphenhydramine and lactoferrin exhibited improved survival rates and rapid rebound in mass following the SARS-CoV-2 challenge compared to mock-treated animals. Clinical translation of these findings may support the discovery of new treatment and research strategies for SARS-CoV-2.


Asunto(s)
COVID-19 , Receptores sigma , Animales , Ratones , SARS-CoV-2 , Antivirales/farmacología , Antivirales/uso terapéutico , Lactoferrina , Ligandos , Difenhidramina
15.
Pharmacol Biochem Behav ; 231: 173633, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37716413

RESUMEN

Fatty acid binding protein 5 (FABP5) interacts with the endocannabinoid system in the brain via intracellular transport of anandamide, as well as Δ9-tetrahydrocannabinol (THC), the main psychoactive component of cannabis. Previous work has established the behavioral effects of genetic deletion of FABP5, but not in the presence of THC. The present study sought to further elucidate the role of FABP5 on the pharmacokinetic and behavioral response to THC through global deletion. Adult FABP5+/+ and FABP5-/- mice were tested for behavioral response to THC using Open Field (OF), Novel Object Recognition (NOR), T-Maze, Morris Water Maze (MWM), and Elevated Plus Maze (EPM). An additional cohort of mice was used to harvest blood, brains, and liver samples to measure THC and metabolites after acute administration of THC. Behavioral tests showed that some cognitive deficits from FABP5 deletion, particularly in MWM, were blocked by THC administration, while this was not observed in other measures of memory and anxiety (such as T-Maze and EPM). Measurement of THC and metabolites in blood serum and brain tissue through UPLC-MS/MS analysis showed that the pharmacokinetics of THC was altered by FABP5. The present study shows further evidence of the importance of FABP5 in cognitive function. Additionally, results showed that FABP5 is an important regulator of the physiological effects and pharmacokinetics of THC.


Asunto(s)
Dronabinol , Proteínas de Unión a Ácidos Grasos , Espectrometría de Masas en Tándem , Animales , Ratones , Encéfalo/metabolismo , Cromatografía Liquida , Cognición , Dronabinol/farmacología , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas de Unión a Ácidos Grasos/farmacología
16.
Chem Biol Interact ; 384: 110715, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37716419

RESUMEN

Kratom, (Mitragyna Speciosa Korth.) is a plant indigenous to Southeast Asia whose leaves are cultivated for a variety of medicinal purposes and mostly consumed as powders or tea in the United States. Kratom use has surged in popularity with the lay public and is currently being investigated for possible therapeutic benefits including as a treatment for opioid withdrawal due to the pharmacologic effects of its indole alkaloids. A wide array of psychoactive compounds are found in kratom, with mitragynine being the most abundant alkaloid. The drug-drug interaction (DDI) potential of mitragynine and related alkaloids have been evaluated for effects on the major cytochrome P450s (CYPs) via in vitro assays and limited clinical investigations. However, no thorough assessment of their potential to inhibit the major hepatic hydrolase, carboxylesterase 1 (CES1), exists. The purpose of this study was to evaluate the in vitro inhibitory potential of kratom extracts and its individual major alkaloids using an established CES1 assay and incubation system. Three separate kratom extracts and the major kratom alkaloids mitragynine, speciogynine, speciociliatine, paynantheine, and corynantheidine displayed a concentration-dependent reversible inhibition of CES1. The experimental Ki values were determined as follows for mitragynine, speciociliatine, paynantheine, and corynantheidine: 20.6, 8.6, 26.1, and 12.5 µM respectively. Speciociliatine, paynantheine, and corynantheidine were all determined to be mixed-type reversible inhibitors of CES1, while mitragynine was a purely competitive inhibitor. Based on available pharmacokinetic data, determined Ki values, and a physiologically based inhibition screen mimicking alkaloid exposures in humans, a DDI mediated via CES1 inhibition appears unlikely across a spectrum of doses (i.e., 2-20g per dose). However, further clinical studies need to be conducted to exclude the possibility of a DDI at higher and extreme doses of kratom and those who are chronic users.


Asunto(s)
Mitragyna , Humanos , Extractos Vegetales/farmacología , Hidrolasas de Éster Carboxílico
17.
Front Pharmacol ; 14: 1227220, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37701025

RESUMEN

Increased use of cannabis and cannabinoids for recreational and medical purposes has led to a growth in research on their effects in animal models. The majority of this work has employed cannabinoid injections; however, smoking remains the most common route of cannabis consumption. To better model real-world cannabis use, we exposed mice to cannabis smoke to establish the pharmacokinetics of Δ9THC and its metabolites in plasma and brain. To determine the time course of Δ9THC and two major metabolites [11-hydroxy-delta-9-tetrahydrocannabinol (11-OH-THC) and 11-nor-9-carboxy-delta-9-tetrahydrocannabinol (11-COOH-THC)], male and female C57BL/6J mice were exposed to smoke from sequentially burning 5 cannabis cigarettes. Following smoke exposure, trunk blood and brains were collected at 6 time points (10-240 min). Plasma and brain homogenates were analyzed for Δ9THC and metabolites using a validated ultraperformance liquid chromatography-tandem mass spectrometry method. To assess effects of age, sex, and mouse strain, we exposed mice of four strains (C57BL/6J, FVB, Swiss Webster, and 129S6/SvEv, aged 4-24 months) to cannabis using the same smoke regimen. Samples were collected 10 and 40 min following exposure. Lastly, to assess effects of dose, C57BL/6J mice were exposed to smoke from burning 3 or 5 cannabis cigarettes, with samples collected 40 min following exposure. The pharmacokinetic study revealed that maximum plasma Δ9THC concentrations (Cmax) were achieved at 10 and 40 min for males and females, respectively, while Cmax for brain Δ9THC was observed at 20 and 40 min for males and females, respectively. There were no age or strain differences in plasma Δ9THC concentrations at 10 or 40 min; however, 129S6/SvEv mice had significantly higher brain Δ9THC concentrations than FVB mice. Additionally, 3 cigarettes produced significantly lower plasma 11-COOH-THC concentrations compared to 5 cigarettes, although dose differences were not evident in plasma or brain concentrations of Δ9THC or 11-OH-THC. Across all experiments, females had higher levels of 11-COOH-THC in plasma compared to males. The results reveal robust sex differences in Δ9THC pharmacokinetics, and lay the groundwork for future studies using mice to model the pharmacodynamics of smoked cannabis.

20.
Eur J Drug Metab Pharmacokinet ; 48(4): 427-435, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37337087

RESUMEN

BACKGROUND AND OBJECTIVES: A wide variety of products containing cannabidiol (CBD) are available on the commercial market. One of the most common products, CBD oil, is administered to self-treat a variety of conditions. These oils are available as CBD isolate, broad-spectrum [all terpenes and minor cannabinoids except Δ-9-tetrahydrocannabinol (THC)], or full-spectrum (all terpenes and minor cannabinoids with THC < 0.3% dried weight) products. A systematic pharmacokinetic study was performed to determine whether there are differences in the pharmacokinetic parameters and systemic exposure of CBD after oral dosing as an isolate, broad-spectrum, or full-spectrum product. METHODS: Male and female Sprague Dawley rats were treated with a single, equivalent oral dose of CBD delivered as isolate, broad-spectrum, or full-spectrum product. An additional study using an in-house preparation of CBD isolate plus 0.2% THC was performed. A permeability assay was also conducted to investigate whether the presence of THC alters the intestinal permeability of CBD. RESULTS: There was an increase in the oral bioavailability of CBD (12% and 21% in male and female rats, respectively) when administered as a full-spectrum product compared with the isolate and broad-spectrum products. There was no difference in the bioavailability of CBD between the commercially available full-spectrum formulation (3.1% CBD; containing 0.2% THC plus terpenes and other minor cannabinoids) versus the in-house preparation of CBD full-spectrum (CBD isolate 3.2% plus 0.2% THC isolate). In vitro permeability assays demonstrated that the presence of THC increases permeability of CBD while also decreasing efflux through the gut wall. CONCLUSIONS: The presence of 0.2% THC increased the oral bioavailability of CBD in male and female rats, indicating that full-spectrum products may produce increased effectiveness of CBD due to a greater exposure available systemically.


Asunto(s)
Cannabidiol , Cannabinoides , Masculino , Femenino , Ratas , Animales , Dronabinol , Ratas Sprague-Dawley , Disponibilidad Biológica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...