Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FASEB J ; 37(4): e22835, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36856735

RESUMEN

Through its classic ATP-dependent ion-pumping function, basolateral Na/K-ATPase (NKA) generates the Na+ gradient that drives apical Na+ reabsorption in the renal proximal tubule (RPT), primarily through the Na+ /H+ exchanger (NHE3). Accordingly, activation of NKA-mediated ion transport decreases natriuresis through activation of basolateral (NKA) and apical (NHE3) Na+ reabsorption. In contrast, activation of the more recently discovered NKA signaling function triggers cellular redistribution of RPT NKA and NHE3 and decreases Na+ reabsorption. We used gene targeting to test the respective contributions of NKA signaling and ion pumping to the overall regulation of RPT Na+ reabsorption. Knockdown of RPT NKA in cells and mice increased membrane NHE3 and Na+ /HCO3 - cotransporter (NBCe1A). Urine output and absolute Na+ excretion decreased by 65%, driven by increased RPT Na+ reabsorption (as indicated by decreased lithium clearance and unchanged glomerular filtration rate), and accompanied by elevated blood pressure. This hyper reabsorptive phenotype was rescued upon crossing with RPT NHE3-/- mice, confirming the importance of NKA/NHE3 coupling. Hence, NKA signaling exerts a tonic inhibition on Na+ reabsorption by regulating key apical and basolateral Na+ transporters. This action, lifted upon NKA genetic suppression, tonically counteracts NKA's ATP-driven function of basolateral Na+ reabsorption. Strikingly, NKA signaling is not only physiologically relevant but it also appears to be functionally dominant over NKA ion pumping in the control of RPT reabsorption.


Asunto(s)
Túbulos Renales , Sodio , Animales , Ratones , Intercambiador 3 de Sodio-Hidrógeno , ATPasa Intercambiadora de Sodio-Potasio , Adenosina Trifosfato
2.
Biol Reprod ; 106(6): 1206-1217, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35420639

RESUMEN

Glucose is a key substrate for supporting sperm energy production and function. Previous studies have demonstrated that sperm glucose uptake is facilitated by several isoforms of the glucose transporters (GLUT). Here, we report that sperm also expresses the Na+-dependent sodium glucose cotransporter (SGLT). This was first suggested by our observation that genetic deletion of the testis-specific Na,K-ATPase α4, which impairs the sperm plasma membrane Na+ gradient, reduces glucose uptake and ATP production. Immunoblot analysis revealed the presence of an SGLT in sperm, with specific expression of isoform 1 (SGLT-1), but not of isoform 2 (SGLT-2). Immunocytochemistry identified SGLT-1 in the mid- and principal piece of the sperm flagellum. Inhibition of SGLT-1 with the isotype-selective inhibitor phlorizin significantly reduced glucose uptake, glycolytic activity, and ATP production in noncapacitated and capacitated sperm from wild-type mice. Phlorizin also decreased total sperm motility, as well as other parameters of sperm movement. In contrast, inhibition of SGLT-1 had no significant effect on sperm hyperactivation, protein tyrosine phosphorylation, or acrosomal reaction. Importantly, phlorizin treatment impaired the fertilizing capacity of sperm. Altogether, these results demonstrate that mouse sperm express a functional SGLT transport system that is important for supporting sperm energy production, motility, and fertility.


Asunto(s)
ATPasa Intercambiadora de Sodio-Potasio , Motilidad Espermática , Adenosina Trifosfato/metabolismo , Animales , Fertilidad , Glucosa/metabolismo , Masculino , Ratones , Florizina/metabolismo , Florizina/farmacología , Isoformas de Proteínas/metabolismo , Sodio/metabolismo , Sodio/farmacología , Transportador 1 de Sodio-Glucosa , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Motilidad Espermática/fisiología , Espermatozoides/metabolismo
3.
J Membr Biol ; 254(5-6): 549-561, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34129092

RESUMEN

Mammalian sperm express two Na,K-ATPase (NKA) isoforms, Na,K-ATPase α4 (NKAα4) and Na,K-ATPase α1 (NKAα1). While NKAα4 is critical to sperm motility, the role of NKAα1 in sperm movement remains unknown. We determined this here using a genetic and pharmacological approach, modifying the affinity of NKAα1 and NKAα4 for the inhibitor ouabain to selectively block the function of each isoform. Sperm from wild-type (WT) mice (naturally containing ouabain-resistant NKAα1 and ouabain-sensitive NKAα4) and three newly generated mouse lines, expressing both NKAα1 and NKAα4 ouabain resistant (OR), ouabain sensitive (OS), and with their ouabain affinity switched (SW) were used. All mouse lines produced normal sperm numbers and were fertile. All sperm types showed NKAα isoform expression levels and activity comparable to WT, and kinetics for ouabain inhibition confirming the expected changes in ouabain affinity for each NKA isoform. Ouabain at 1 µM, which only block ouabain-sensitive NKA, significantly inhibited total, progressive, and hyperactivated sperm motility in WT and OS, but had no significant effect on OR or SW sperm. Higher ouabain (1 mM), which inhibits both ouabain-sensitive and ouabain-resistant NKA, had little additional effect on sperm motility in all mouse lines, including the OR and SW. A similar pattern was found for the effect of ouabain on sperm intracellular sodium ([Na+]i). These results indicate that NKAα4, but not NKAα1 is the main contributor to sperm motility and that the ouabain affinity site in NKA is not an essential requirement for male fertility.


Asunto(s)
Motilidad Espermática , Animales , Fertilidad , Iones , Masculino , Ratones , Ouabaína/farmacología , Sodio , ATPasa Intercambiadora de Sodio-Potasio/genética
4.
J Assist Reprod Genet ; 38(6): 1493-1505, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33977467

RESUMEN

PURPOSE: The aim of this study is to investigate the mechanisms by which the testis specific Na,K-ATPase ion transport system (Atp1a4) controls sperm morphology and shape. METHODS: Sperm from wild-type (WT) and Atp1a4 knockout (Atp1a4 KO) mice were analyzed morphologically, using light, transmission, and scanning electron microscopy; and functionally, applying sperm osmotic challenge and viability tests. In addition, a sperm proteomic study was performed. RESULTS: Light microscopy confirmed that sperm lacking Atp1a4 present a bend at the junction of the mid- and principal piece of the flagellum. This bend had different degrees of angulation, reaching occasionally a complete flagellar retroflexion. The defect appeared in sperm collected from the cauda epididymis, but not the epididymal caput or the testis. Transmission and scanning electron microscopy revealed a dilation of the cytoplasm at the site of the bend, with fusion of the plasma membrane in overlapping segments of the flagellum. This was accompanied by defects in the axoneme and peri-axonemal structures. Sperm from Atp1a4 KO mice showed an abnormal response to hypoosmotic challenge with decreased viability, suggesting reduced capacity for volume regulation. Exposure to Triton X-100 only partially recovered the flagellar bend of Atp1a4 KO sperm, showing that factors other than osmotic regulation contribute to the flagellar defect. Interestingly, several key sperm structural proteins were expressed in lower amounts in Atp1a4 KO sperm, with no changes in their localization. CONCLUSIONS: Altogether, our results show that Atp1a4 plays an important role in maintaining the proper shape of the sperm flagellum through both osmotic control and structurally related mechanisms.


Asunto(s)
Proteómica , ATPasa Intercambiadora de Sodio-Potasio/genética , Cola del Espermatozoide/ultraestructura , Animales , Forma de la Célula/genética , Humanos , Masculino , Ratones , Ratones Noqueados , Isoformas de Proteínas/genética , Motilidad Espermática/genética , Cola del Espermatozoide/patología , Espermatozoides/patología , Espermatozoides/ultraestructura , Testículo/crecimiento & desarrollo , Testículo/patología
5.
Steroids ; 155: 108551, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31812624

RESUMEN

Cardiotonic steroids (CTS) are agents traditionally known for their capacity to bind to the Na,K-ATPase (NKA), affecting the ion transport and the contraction of the heart. Natural CTS have been shown to also have effects on cell signaling pathways. With the goal of developing a new CTS derivative, we synthesized a new digoxin derivative, 21-benzylidene digoxin (21-BD). Previously, we have shown that this compound binds to NKA and has cytotoxic actions on cancer, but not on normal cells. Here, we further studied the mechanisms of actions of 21-BD. Working with HeLa cells, we found that 21-BD decreases the basal, as well as the insulin stimulated proliferation. 21-BD reduces phosphorylation of the epidermal growth factor receptor (EGFR) and extracellular-regulated kinase (ERK), which are involved in pathways that stimulate cell proliferation. In addition, 21-BD promotes apoptosis, which is mediated by the translocation of Bax from the cytosol to mitochondria and the release of mitochondrial cytochrome c to the cytosol. 21-BD also activated caspases-8, -9 and -3, and induced the cleavage of poly (ADP-ribose) polymerase-1 (PARP-1). Altogether, these results show that the new compound that we have synthesized exerts cytotoxic actions on HeLa cells by inhibition of cell proliferation and the activation of both the extrinsic and intrinsic apoptotic pathways. These results support the relevance of the cardiotonic steroid scaffold as modulators of cell signaling pathways and potential agents for their use in cancer.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Digoxina/análogos & derivados , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Digoxina/química , Digoxina/farmacología , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células HeLa , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Conformación Molecular , Inhibidores de Proteínas Quinasas/química , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Células Tumorales Cultivadas
6.
Int J Parasitol ; 32(10): 1293-300, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12204229

RESUMEN

A chitinase full-length cDNA (designated Hg-chi-1) was isolated from a Heterodera glycines oesophageal gland cell-specific long-distance PCR cDNA library. The cDNA hybridised to genomic DNA of H. glycines in Southern blots. The Hg-chi-1 cDNA contained an open reading frame encoding 350 amino acids with the first 23 amino acids being a putative signal peptide for secretion. Hg-CHI-1 contained a chitinase 18 family catalytic domain, and chitinolytic activity of recombinant Hg-CHI-1 was confirmed in glycol-chitin substrate gel electrophoresis. In situ mRNA hybridisation analyses showed that transcripts of Hg-chi-1 accumulated specifically in the subventral oesophageal gland cells of parasitic stages of H. glycines, but Hg-chi-1 expression was not detected in eggs or hatched pre-parasitic second-stage juveniles, suggesting that this chitinase does not have a role in egg hatching of H. glycines. The biological function of Hg-CHI-1 in H. glycines remains to be determined.


Asunto(s)
Quitinasas/genética , Quitinasas/metabolismo , Genes de Helminto , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Tylenchoidea/enzimología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Southern Blotting , Quitinasas/análisis , Clonación Molecular , ADN Complementario/análisis , ADN Complementario/aislamiento & purificación , ADN de Helmintos/genética , Expresión Génica , Genoma , Hibridación in Situ , Estadios del Ciclo de Vida , Datos de Secuencia Molecular , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Tylenchoidea/crecimiento & desarrollo , Tylenchoidea/metabolismo
7.
Mol Plant Pathol ; 3(4): 261-70, 2002 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20569333

RESUMEN

Summary A microarray was printed containing cDNAs from a library made from cytoplasm microaspirated from the oesophageal gland cell region of parasitic stages of the soybean cyst nematode, Heterodera glycines. The array contained both previously described clones (Wang et al. Mol. Plant-Microbe Interact. 2001, 14, 536-544) and uncharacterized cDNAs. Fluorescent probes for array hybridization were prepared using RNA polymerase amplification of nematode mRNA. Developmental expression profiles of the arrayed cDNAs were determined by hybridizing the microarray with probes from parasitic and non-parasitic H. glycines life stages. Distinct patterns of developmental expression were ascertained for the previously described gland expressed genes. In addition, four H. glycines cDNAs (SCN1018, SCN1020, SCN1028 and SCN1167) were identified that showed up-regulation in one or more parasitic life stages. Clone SCN1018 encodes a C-type lectin domain and is expressed in the hypodermis of females. Clone SCN1020 encodes a probable S-adenosylmethionine synthetase. Clone SCN1028 encodes a piwi protein with high similarity to the germ-line-specific protein R06C7.1 of Caenorhabditis elegans. The sequence of SCN1167 had no similarity to known genes. This paper describes the first use of cDNA microarrays to analyse genes of a plant-parasitic nematode and establishes a functional method to mine nematode cDNA libraries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...