Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 11(1): 3862, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32737291

RESUMEN

Allostery in proteins influences various biological processes such as regulation of gene transcription and activities of enzymes and cell signaling. Computational approaches for analysis of allosteric coupling provide inexpensive opportunities to predict mutations and to design small-molecule agents to control protein function and cellular activity. We develop a computationally efficient network-based method, Ohm, to identify and characterize allosteric communication networks within proteins. Unlike previously developed simulation-based approaches, Ohm relies solely on the structure of the protein of interest. We use Ohm to map allosteric networks in a dataset composed of 20 proteins experimentally identified to be allosterically regulated. Further, the Ohm allostery prediction for the protein CheY correlates well with NMR CHESCA studies. Our webserver, Ohm.dokhlab.org, automatically determines allosteric network architecture and identifies critical coupled residues within this network.


Asunto(s)
Algoritmos , Proteínas Quimiotácticas Aceptoras de Metilo/química , Mapeo de Interacción de Proteínas/estadística & datos numéricos , Programas Informáticos , Regulación Alostérica , Sitio Alostérico , Animales , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli , Humanos , Internet , Proteínas Quimiotácticas Aceptoras de Metilo/antagonistas & inhibidores , Proteínas Quimiotácticas Aceptoras de Metilo/metabolismo , Simulación de Dinámica Molecular , Estructura Secundaria de Proteína
2.
Structure ; 22(12): 1735-1743, 2014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25458836

RESUMEN

Conformational fluctuations play a central role in enzymatic catalysis. However, it is not clear how the rates and the coordination of the motions affect the different catalytic steps. Here, we used NMR spectroscopy to analyze the conformational fluctuations of the catalytic subunit of the cAMP-dependent protein kinase (PKA-C), a ubiquitous enzyme involved in a myriad of cell signaling events. We found that the wild-type enzyme undergoes synchronous motions involving several structural elements located in the small lobe of the kinase, which is responsible for nucleotide binding and release. In contrast, a mutation (Y204A) located far from the active site desynchronizes the opening and closing of the active cleft without changing the enzyme's structure, rendering it catalytically inefficient. Since the opening and closing motions govern the rate-determining product release, we conclude that optimal and coherent conformational fluctuations are necessary for efficient turnover of protein kinases.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Transducción de Señal/fisiología , Secuencia de Aminoácidos , Catálisis , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Unión Proteica , Conformación Proteica
3.
J Mol Biol ; 425(13): 2372-81, 2013 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-23648838

RESUMEN

It is now widely recognized that dynamics are important to consider for understanding allosteric protein function. However, dynamics occur over a wide range of timescales, and how these different motions relate to one another is not well understood. Here, we report an NMR relaxation study of dynamics over multiple timescales at both backbone and side-chain sites upon an allosteric response to phosphorylation. The response regulator, Escherichia coli CheY, allosterically responds to phosphorylation with a change in dynamics on both the microsecond-to-millisecond (µs-ms) timescale and the picosecond-to-nanosecond (ps-ns) timescale. We observe an apparent decrease and redistribution of µs-ms dynamics upon phosphorylation (and accompanying Mg(2+) saturation) of CheY. Additionally, methyl groups with the largest changes in ps-ns dynamics localize to the regions of conformational change measured by µs-ms dynamics. The limited spread of changes in ps-ns dynamics suggests a distinct relationship between motions on the µs-ms and ps-ns timescales in CheY. The allosteric mechanism utilized by CheY highlights the diversity of roles dynamics play in protein function.


Asunto(s)
Regulación Alostérica , Proteínas Bacterianas/química , Proteínas de la Membrana/química , Proteínas Bacterianas/metabolismo , Escherichia coli/fisiología , Proteínas de Escherichia coli , Cinética , Espectroscopía de Resonancia Magnética , Proteínas de la Membrana/metabolismo , Proteínas Quimiotácticas Aceptoras de Metilo , Fosforilación , Conformación Proteica , Procesamiento Proteico-Postraduccional , Transducción de Señal
4.
Structure ; 20(8): 1363-73, 2012 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-22727815

RESUMEN

The switch between an inactive and active conformation is an important transition for signaling proteins, yet the mechanisms underlying such switches are not clearly understood. Escherichia coli CheY, a response regulator protein from the two-component signal transduction system that regulates bacterial chemotaxis, is an ideal protein for the study of allosteric mechanisms. By using 15N CPMG relaxation dispersion experiments, we monitored the inherent dynamic switching of unphosphorylated CheY. We show that CheY does not undergo a two-state concerted switch between the inactive and active conformations. Interestingly, partial saturation of Mg2+ enhances the intrinsic allosteric motions. Taken together with chemical shift perturbations, these data indicate that the µs-ms timescale motions underlying CheY allostery are segmental in nature. We propose an expanded allosteric network of residues, including W58, that undergo asynchronous, local switching between inactive and active-like conformations as the primary basis for the allosteric mechanism.


Asunto(s)
Proteínas Bacterianas/química , Escherichia coli , Proteínas de la Membrana/química , Modelos Moleculares , Algoritmos , Regulación Alostérica , Sitio Alostérico , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Dominio Catalítico , Proteínas de Escherichia coli , Enlace de Hidrógeno , Magnesio/química , Proteínas de la Membrana/genética , Proteínas Quimiotácticas Aceptoras de Metilo , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA