Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oncotarget ; 6(7): 4863-87, 2015 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-25605023

RESUMEN

Gain-of-function mutations in the catalytic site of EZH2 (Enhancer of Zeste Homologue 2), is observed in about 22% of diffuse large B-cell lymphoma (DLBCL) cases. Here we show that selective inhibition of histone deacetylase 1,2 (HDAC1,2) activity using a small molecule inhibitor causes cytotoxic or cytostatic effects in EZH2 gain-of-function mutant (EZH2GOF) DLBCL cells. Our results show that blocking the activity of HDAC1,2 increases global H3K27ac without causing a concomitant global decrease in H3K27me3 levels. Our data shows that inhibition of HDAC1,2 is sufficient to decrease H3K27me3 present at DSBs, decrease DSB repair and activate the DNA damage response in these cells. In addition to increased H3K27me3, we found that the EZH2GOF DLBCL cells overexpress another chemotherapy resistance factor - B-lymphoma and BAL-associated protein (BBAP). BBAP monoubiquitinates histone H4K91, a residue that is also subjected to acetylation. Our results show that selective inhibition of HDAC1,2 increases H4K91ac, decreases BBAP-mediated H4K91 monoubiquitination, impairs BBAP-dependent DSB repair and sensitizes the refractory EZH2GOF DLBCL cells to treatment with doxorubicin, a chemotherapy agent. Hence, selective HDAC1,2 inhibition provides a novel DNA repair mechanism-based therapeutic approach as it can overcome both EZH2- and BBAP-mediated DSB repair in the EZH2GOF DLBCL cells.


Asunto(s)
Reparación del ADN , Histona Desacetilasa 1/antagonistas & inhibidores , Histona Desacetilasa 2/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Complejo Represivo Polycomb 2/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Adulto , Línea Celular Tumoral , Proteína Potenciadora del Homólogo Zeste 2 , Células HeLa , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/genética , Histona Desacetilasa 2/metabolismo , Humanos , Linfoma de Células B Grandes Difuso/metabolismo , Masculino , Complejo Represivo Polycomb 2/genética , Transfección , Ubiquitina-Proteína Ligasas/genética
2.
Toxicol Sci ; 143(1): 36-45, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25265996

RESUMEN

In mammals, lactation is a rich source of nutrients and antibodies for newborn animals. However, millions of mothers each year experience an inability to breastfeed. Exposure to several environmental toxicants, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), has been strongly implicated in impaired mammary differentiation and lactation. TCDD and related polyhalogenated aromatic hydrocarbons are widespread industrial pollutants that activate the aryl hydrocarbon receptor (AHR). Despite many epidemiological and animal studies, the molecular mechanism through which AHR signaling blocks lactation remains unclear. We employed in vitro models of mammary differentiation to recapitulate lactogenesis in the presence of toxicants. We demonstrate AHR agonists directly block milk production in isolated mammary epithelial cells. Moreover, we define a novel role for the aryl hydrocarbon receptor repressor (AHRR) in mediating this response. Our mechanistic studies suggest AHRR is sufficient to block transcription of the milk gene ß-casein. As TCDD is a prevalent environmental pollutant that affects women worldwide, our results have important public health implications for newborn nutrition.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/agonistas , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Células Epiteliales/efectos de los fármacos , Lactancia/efectos de los fármacos , Glándulas Mamarias Animales/efectos de los fármacos , Dibenzodioxinas Policloradas/toxicidad , Receptores de Hidrocarburo de Aril/agonistas , Proteínas Represoras/efectos de los fármacos , Animales , Translocador Nuclear del Receptor de Aril Hidrocarburo/efectos de los fármacos , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Caseínas/genética , Caseínas/metabolismo , Células Cultivadas , Regulación hacia Abajo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/patología , Glándulas Mamarias Animales/fisiopatología , Ratones , Interferencia de ARN , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Transfección
3.
J Virol ; 87(14): 8038-52, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23678174

RESUMEN

ORF59 of Kaposi's sarcoma-associated herpesvirus (KSHV) plays an essential role in viral lytic replication by providing DNA processivity activity to the viral DNA polymerase (ORF9). ORF59 forms a homodimer in the cytoplasm and binds and translocates ORF9 into the nucleus, where it secures ORF9 to the origin of lytic DNA replication (oriLyt) in order to synthesize long DNA fragments during replication. ORF59 binds to oriLyt through an immediate early protein, replication and transcription activator (RTA). Here, we show that viral kinase (ORF36) phosphorylates serines between amino acids 376 and 379 of ORF59 and replacement of the Ser378 residue with alanine significantly impairs phosphorylation. Although mutating these serine residues had no effect on binding between ORF59 and ORF9, viral polymerase, or ORF36, the viral kinase, it significantly reduced the ability of ORF59 to bind to RTA. The results for the mutant in which Ser376 to Ser379 were replaced by alanine showed that both Ser378 and Ser379 contribute to binding to RTA. Additionally, the Ser376, Ser378, and Ser379 residues were found to be critical for binding of ORF59 to oriLyt and its processivity function. Ablation of these phosphorylation sites reduced the production of virion particles, suggesting that phosphorylation is critical for ORF59 activity and viral DNA synthesis.


Asunto(s)
ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Quinasas/metabolismo , Transactivadores/metabolismo , Proteínas Virales/metabolismo , Western Blotting , Técnicas de Cultivo de Célula , Inmunoprecipitación de Cromatina , Cartilla de ADN/genética , Técnica del Anticuerpo Fluorescente Indirecta , Prueba de Complementación Genética , Inmunoprecipitación , Fosforilación , Unión Proteica , Reacción en Cadena en Tiempo Real de la Polimerasa , Transfección , Proteínas Virales/genética
4.
J Virol ; 86(18): 9983-94, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22761383

RESUMEN

The latency-associated nuclear antigen (LANA) encoded by Kaposi's sarcoma-associated herpesvirus (KSHV) plays a major role in maintaining latency and is critical for the perpetual segregation of viral episomes to the progeny nuclei of newly divided cells. LANA binds to KSHV terminal repeat (TR) DNA and tethers the viral episomes to host chromosomes through the association of chromatin-bound cellular proteins. TR elements serve as potential origin sites of KSHV replication and have been shown to play important roles in latent DNA replication and transcription of adjacent genes. Affinity chromatography and proteomics analysis using KSHV TR DNA and the LANA binding site as the affinity column identified topoisomerase IIß (TopoIIß) as a LANA-interacting protein. Here, we show that TopoIIß forms complexes with LANA that colocalize as punctuate bodies in the nucleus of KSHV-infected cells. The specific TopoIIß binding region of LANA has been identified to its N terminus and the first 32 amino acid residues containing the nucleosome-binding region crucial for binding. Moreover, this region could also act as a dominant negative to disrupt association of TopoIIß with LANA. TopoIIß plays an important role in LANA-dependent latent DNA replication, as addition of ellipticine, a selective inhibitor of TopoII, negatively regulated replication mediated by the TR. DNA break labeling and chromatin immunoprecipitation assay using biotin-16-dUTP and terminal deoxynucleotide transferase showed that TopoIIß mediates a transient DNA break on viral DNA. These studies confirm that LANA recruits TopoIIß at the origins of latent replication to unwind the DNA for replication.


Asunto(s)
Antígenos Virales/genética , Antígenos Virales/metabolismo , Replicación del ADN , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/metabolismo , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Secuencia de Aminoácidos , Animales , Antígenos Virales/química , Secuencia de Bases , Línea Celular , Núcleo Celular/metabolismo , Núcleo Celular/virología , Replicación del ADN/efectos de los fármacos , ADN-Topoisomerasas de Tipo II/química , ADN Viral/biosíntesis , ADN Viral/genética , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/química , Elipticinas/farmacología , Células HEK293 , Herpesvirus Humano 8/patogenicidad , Interacciones Huésped-Patógeno , Humanos , Ratones , Modelos Biológicos , Datos de Secuencia Molecular , Proteínas Nucleares/química , Dominios y Motivos de Interacción de Proteínas , Secuencias Repetidas Terminales , Inhibidores de Topoisomerasa II/farmacología , Latencia del Virus
5.
PLoS Pathog ; 7(11): e1002365, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22072974

RESUMEN

Kaposi's sarcoma associated herpesvirus (KSHV), an etiologic agent of Kaposi's sarcoma, Body Cavity Based Lymphoma and Multicentric Castleman's Disease, establishes lifelong latency in infected cells. The KSHV genome tethers to the host chromosome with the help of a latency associated nuclear antigen (LANA). Additionally, LANA supports replication of the latent origins within the terminal repeats by recruiting cellular factors. Our previous studies identified and characterized another latent origin, which supported the replication of plasmids ex-vivo without LANA expression in trans. Therefore identification of an additional origin site prompted us to analyze the entire KSHV genome for replication initiation sites using single molecule analysis of replicated DNA (SMARD). Our results showed that replication of DNA can initiate throughout the KSHV genome and the usage of these regions is not conserved in two different KSHV strains investigated. SMARD also showed that the utilization of multiple replication initiation sites occurs across large regions of the genome rather than a specified sequence. The replication origin of the terminal repeats showed only a slight preference for their usage indicating that LANA dependent origin at the terminal repeats (TR) plays only a limited role in genome duplication. Furthermore, we performed chromatin immunoprecipitation for ORC2 and MCM3, which are part of the pre-replication initiation complex to determine the genomic sites where these proteins accumulate, to provide further characterization of potential replication initiation sites on the KSHV genome. The ChIP data confirmed accumulation of these pre-RC proteins at multiple genomic sites in a cell cycle dependent manner. Our data also show that both the frequency and the sites of replication initiation vary within the two KSHV genomes studied here, suggesting that initiation of replication is likely to be affected by the genomic context rather than the DNA sequences.


Asunto(s)
ADN Viral/biosíntesis , Genoma Viral , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiología , Replicación Viral , Antígenos Virales/genética , Antígenos Virales/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Replicación del ADN , ADN Viral/química , ADN Viral/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Componente 3 del Complejo de Mantenimiento de Minicromosoma , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Complejo de Reconocimiento del Origen/genética , Complejo de Reconocimiento del Origen/metabolismo , Origen de Réplica , Latencia del Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA