Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 287(21): 17554-17567, 2012 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-22467874

RESUMEN

c-Jun N-terminal kinase (JNK) is a serine/threonine phosphotransferase whose sustained activation in response to genotoxic stress promotes apoptosis. In Drosophila, the normally rapid JNK-dependent apoptotic response to genotoxic stress is significantly delayed in Dmp53 (Drosophila p53) mutants. Likewise, the extent of JNK activity after UV irradiation is dependent on p53 in murine embryonic fibroblasts with loss of p53 resulting in diminished JNK activity. Together, these results suggest that p53 potentiates the JNK-dependent response to genotoxic stress; however, the mechanism whereby p53 stimulates JNK activity remains undefined. Here, we demonstrate that both Drosophila and human p53 can directly stimulate JNK activity independently of p53-dependent gene transcription. Furthermore, we demonstrate that both the Drosophila and human p53 orthologs form a physical complex with diphosphorylated JNK ((DP)JNK) both in vivo and in vitro, suggesting that the interaction is evolutionarily conserved. Focusing on human p53, we demonstrate that the interaction maps to the DNA binding domain (hp53(DBD)). Intriguingly, binding of p53(DBD) alone to (DP)JNK prevented its inactivation by MAPK phosphatase (MKP)-5; however, JNK was still able to phosphorylate c-Jun while in a complex with the p53(DBD). Apparent dissociation constants for the p53(DBD)·(DP)JNK (274 ± 14 nm) and MKP-5·(DP)JNK (55 ± 8 nm) complexes were established; however, binding of MKP-5 and p53 to JNK was not mutually exclusive. Together, these results suggest that stress-dependent increases in p53 levels potentiate JNK activation by preventing its rapid dephosphorylation by MKPs and that the simultaneous activation of p53 and JNK may constitute a "fail-safe" switch for the JNK-dependent apoptotic response.


Asunto(s)
Apoptosis/fisiología , Proteínas de Drosophila/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Complejos Multiproteicos/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Drosophila melanogaster , Fosfatasas de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/metabolismo , Activación Enzimática/fisiología , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/genética , MAP Quinasa Quinasa 4/genética , MAP Quinasa Quinasa 4/metabolismo , Ratones , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Complejos Multiproteicos/genética , Fosforilación , Estructura Terciaria de Proteína , Proteína p53 Supresora de Tumor/genética
2.
Am J Physiol Renal Physiol ; 302(9): F1210-23, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22301622

RESUMEN

We investigated the signaling basis for tubule pathology during fibrosis after renal injury. Numerous signaling pathways are activated physiologically to direct tubule regeneration after acute kidney injury (AKI) but several persist pathologically after repair. Among these, transforming growth factor (TGF)-ß is particularly important because it controls epithelial differentiation and profibrotic cytokine production. We found that increased TGF-ß signaling after AKI is accompanied by PTEN loss from proximal tubules (PT). With time, subpopulations of regenerating PT with persistent loss of PTEN (phosphate and tension homolog) failed to differentiate, became growth arrested, expressed vimentin, displayed profibrotic JNK activation, and produced PDGF-B. These tubules were surrounded by fibrosis. In contrast, PTEN recovery was associated with epithelial differentiation, normal tubule repair, and less fibrosis. This beneficial outcome was promoted by TGF-ß antagonism. Tubule-specific induction of TGF-ß led to PTEN loss, JNK activation, and fibrosis even without prior AKI. In PT culture, high TGF-ß depleted PTEN, inhibited differentiation, and activated JNK. Conversely, TGF-ß antagonism increased PTEN, promoted differentiation, and decreased JNK activity. Cre-Lox PTEN deletion suppressed differentiation, induced growth arrest, and activated JNK. The low-PTEN state with JNK signaling and fibrosis was ameliorated by contralateral nephrectomy done 2 wk after unilateral ischemia, suggesting reversibility of the low-PTEN dysfunctional tubule phenotype. Vimentin-expressing tubules with low-PTEN and JNK activation were associated with fibrosis also after tubule-selective AKI, and with human chronic kidney diseases of diverse etiology. By preventing tubule differentiation, the low-PTEN state may provide a platform for signals initiated physiologically to persist pathologically and cause fibrosis after injury.


Asunto(s)
Diferenciación Celular , Túbulos Renales Proximales/patología , MAP Quinasa Quinasa 4/fisiología , Fosfohidrolasa PTEN/deficiencia , Fenotipo , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/fisiología , Lesión Renal Aguda/patología , Lesión Renal Aguda/fisiopatología , Animales , Células Cultivadas , Enfermedad Crónica , Fibrosis , Humanos , Enfermedades Renales/patología , Enfermedades Renales/fisiopatología , Túbulos Renales Proximales/fisiopatología , Masculino , Ratones , Ratones Transgénicos , Modelos Animales , Ratas , Ratas Sprague-Dawley , Regeneración/fisiología , Daño por Reperfusión/patología , Daño por Reperfusión/fisiopatología
3.
J Biol Chem ; 287(12): 8702-13, 2012 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-22275371

RESUMEN

Polyhomeotic (Ph), a member of the Polycomb Group (PcG), is a gene silencer critical for proper development. We present a previously unrecognized way of controlling Ph function through modulation of its sterile alpha motif (SAM) polymerization leading to the identification of a novel target for tuning the activities of proteins. SAM domain containing proteins have been shown to require SAM polymerization for proper function. However, the role of the Ph SAM polymer in PcG-mediated gene silencing was uncertain. Here, we first show that Ph SAM polymerization is indeed required for its gene silencing function. Interestingly, the unstructured linker sequence N-terminal to Ph SAM can shorten the length of polymers compared with when Ph SAM is individually isolated. Substituting the native linker with a random, unstructured sequence (RLink) can still limit polymerization, but not as well as the native linker. Consequently, the increased polymeric Ph RLink exhibits better gene silencing ability. In the Drosophila wing disc, Ph RLink expression suppresses growth compared with no effect for wild-type Ph, and opposite to the overgrowth phenotype observed for polymer-deficient Ph mutants. These data provide the first demonstration that the inherent activity of a protein containing a polymeric SAM can be enhanced by increasing SAM polymerization. Because the SAM linker had not been previously considered important for the function of SAM-containing proteins, our finding opens numerous opportunities to manipulate linker sequences of hundreds of polymeric SAM proteins to regulate a diverse array of intracellular functions.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila/crecimiento & desarrollo , Drosophila/metabolismo , Nucleoproteínas/química , Nucleoproteínas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Proteínas de Unión al ADN/genética , Drosophila/química , Drosophila/genética , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , Datos de Secuencia Molecular , Nucleoproteínas/genética , Complejo Represivo Polycomb 1 , Polimerizacion , Estructura Terciaria de Proteína , Alineación de Secuencia
4.
J Mol Biol ; 412(4): 601-18, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21821041

RESUMEN

Transforming growth factor ß isoforms (TGF-ß) are among the most recently evolved members of a signaling superfamily with more than 30 members. TGF-ß play vital roles in regulating cellular growth and differentiation, and they signal through a highly restricted subset of receptors known as TGF-ß type I receptor (TßR-I) and TGF-ß type II receptor (TßR-II). TGF-ß's specificity for TßR-I has been proposed to arise from its pre-helix extension, a five-residue loop that binds in the cleft between TGF-ß and TßR-II. The structure and backbone dynamics of the unbound form of the TßR-I extracellular domain were determined using NMR to investigate the extension's role in binding. This showed that the unbound form is highly similar to the bound form in terms of both the ß-strand framework that defines the three-finger toxin fold and the extension and its characteristic cis-Ile54-Pro55 peptide bond. The NMR data further showed that the extension and two flanking 3(10) helices are rigid on the nanosecond-to-picosecond timescale. The functional significance of several residues within the extension was investigated by binding studies and reporter gene assays in cultured epithelial cells. These demonstrated that the pre-helix extension is essential for binding, with Pro55 and Pro59 each playing a major role. These findings suggest that the pre-helix extension and its flanking prolines evolved to endow the TGF-ß signaling complex with its unique specificity, departing from the ancestral promiscuity of the bone morphogenetic protein subfamily, where the binding interface of the type I receptor is highly flexible.


Asunto(s)
Prolina/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/química , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Humanos , Isoleucina/química , Isoleucina/fisiología , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Prolina/química , Prolina/fisiología , Unión Proteica/fisiología , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína/fisiología , Receptor Tipo I de Factor de Crecimiento Transformador beta , Homología de Secuencia de Aminoácido , Factor de Crecimiento Transformador beta1/metabolismo
5.
Structure ; 18(8): 966-75, 2010 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-20696397

RESUMEN

RING1B, a Polycomb Group (PcG) protein, binds methylated chromatin through its association with another PcG protein called Polycomb (Pc). However, RING1B can associate with nonmethylated chromatin suggesting an alternate mechanism for RING1B interaction with chromatin. Here, we demonstrate that two proteins with little sequence identity between them, the Pc cbox domain and RYBP, bind the same surface on the C-terminal domain of RING1B (C-RING1B). Pc cbox and RYBP each fold into a nearly identical, intermolecular beta sheet with C-RING1B and a loop structure which are completely different in the two proteins. Both the beta sheet and loop are required for stable binding and transcription repression. Further, a mutation engineered to disrupt binding on the Drosophila dRING1 protein prevents chromatin association and PcG function in vivo. These results suggest that PcG targeting to different chromatin locations relies, in part, on binding partners of C-RING1B that are diverse in sequence and structure.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Modelos Moleculares , Unión Proteica , Proteínas Recombinantes/metabolismo , Proteínas Represoras/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Cromatina/metabolismo , Cristalografía por Rayos X , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Electroforesis en Gel de Poliacrilamida , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Datos de Secuencia Molecular , Mutación/genética , Resonancia Magnética Nuclear Biomolecular , Complejo Represivo Polycomb 1 , Proteínas del Grupo Polycomb , Estructura Terciaria de Proteína/genética , Proteínas Recombinantes/genética , Proteínas Represoras/química , Alineación de Secuencia , Ultracentrifugación
6.
Biochem Biophys Res Commun ; 395(1): 17-24, 2010 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-20307494

RESUMEN

Arachidonic acid derived endogenous electrophile 15d-PGJ2 has gained much attention in recent years due to its potent anti-proliferative and anti-inflammatory actions mediated through thiol modification of cysteine residues in its target proteins. Here, we show that 15d-PGJ2 at 1 microM concentration converts normal mitochondria into large elongated and interconnected mitochondria through direct binding to mitochondrial fission protein Drp1 and partial inhibition of its GTPase activity. Mitochondrial elongation induced by 15d-PGJ2 is accompanied by increased assembly of Drp1 into large oligomeric complexes through plausible intermolecular interactions. The role of decreased GTPase activity of Drp1 in the formation of large oligomeric complexes is evident when Drp1 is incubated with a non-cleavable GTP analog, GTPgammaS or by a mutation that inactivated GTPase activity of Drp1 (K38A). The mutation of cysteine residue (Cys644) in the GTPase effector domain, a reported target for modification by reactive electrophiles, to alanine mimicked K38A mutation induced Drp1 oligomerization and mitochondrial elongation, suggesting the importance of cysteine in GED to regulate the GTPase activity and mitochondrial morphology. Interestingly, treatment of K38A and C644A mutants with 15d-PGJ2 resulted in super oligomerization of both mutant Drp1s indicating that 15d-PGJ2 may further stabilize Drp1 oligomers formed by loss of GTPase activity through covalent modification of middle domain cysteine residues. The present study documents for the first time the regulation of a mitochondrial fission activity by a prostaglandin, which will provide clues for understanding the pathological and physiological consequences of accumulation of reactive electrophiles during oxidative stress, inflammation and degeneration.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/efectos de los fármacos , Proteínas Mitocondriales/metabolismo , Prostaglandina D2/análogos & derivados , Animales , Línea Celular , Cisteína/genética , Dinaminas/genética , Dinaminas/metabolismo , GTP Fosfohidrolasas/antagonistas & inhibidores , GTP Fosfohidrolasas/genética , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/genética , Mitocondrias/fisiología , Proteínas Mitocondriales/genética , Mutación , Prostaglandina D2/farmacología , Estructura Terciaria de Proteína/genética , Ratas
7.
Cell ; 137(7): 1343-55, 2009 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-19563763

RESUMEN

Cells in intestinal epithelia turn over rapidly due to damage from digestion and toxins produced by the enteric microbiota. Gut homeostasis is maintained by intestinal stem cells (ISCs) that divide to replenish the intestinal epithelium, but little is known about how ISC division and differentiation are coordinated with epithelial cell loss. We show here that when enterocytes (ECs) in the Drosophila midgut are subjected to apoptosis, enteric infection, or JNK-mediated stress signaling, they produce cytokines (Upd, Upd2, and Upd3) that activate Jak/Stat signaling in ISCs, promoting their rapid division. Upd/Jak/Stat activity also promotes progenitor cell differentiation, in part by stimulating Delta/Notch signaling, and is required for differentiation in both normal and regenerating midguts. Hence, cytokine-mediated feedback enables stem cells to replace spent progeny as they are lost, thereby establishing gut homeostasis.


Asunto(s)
Drosophila/citología , Drosophila/metabolismo , Animales , Apoptosis , Citocinas/metabolismo , Drosophila/inmunología , Drosophila/microbiología , Proteínas de Drosophila/metabolismo , Enterocitos/citología , Enterocitos/metabolismo , Homeostasis , Intestinos/citología , Intestinos/microbiología , Intestinos/fisiología , Quinasas Janus/metabolismo , Regeneración , Factores de Transcripción STAT/metabolismo , Transducción de Señal , Células Madre/citología , Células Madre/metabolismo , Factores de Transcripción/metabolismo
8.
Development ; 132(17): 3935-46, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16079158

RESUMEN

MAPK phosphatases (MKPs) are important negative regulators of MAPKs in vivo, but ascertaining the role of specific MKPs is hindered by functional redundancy in vertebrates. Thus, we characterized MKP function by examining the function of Puckered (Puc), the sole Drosophila Jun N-terminal kinase (JNK)-specific MKP, during embryonic and imaginal disc development. We demonstrate that Puc is a key anti-apoptotic factor that prevents apoptosis in epithelial cells by restraining basal JNK signaling. Furthermore, we demonstrate that JNK signaling plays an important role in gamma-irradiation-induced apoptosis, and examine how JNK signaling fits into the circuitry regulating this process. Radiation upregulates both JNK activity and puc expression in a p53-dependent manner, and apoptosis induced by loss of Puc can be suppressed by p53 inactivation. JNK signaling acts upstream of both Reaper and effector caspases. Finally, we demonstrate that JNK signaling directs normal developmentally regulated apoptotic events. However, if cell death is prevented, JNK activation can trigger tissue overgrowth. Thus, MKPs are key regulators of the delicate balance between proliferation, differentiation and apoptosis during development.


Asunto(s)
Apoptosis , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/enzimología , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Animales , Apoptosis/efectos de la radiación , Supervivencia Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Sistema de Señalización de MAP Quinasas , Fosfoproteínas Fosfatasas/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
9.
Mol Endocrinol ; 18(1): 241-51, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14563937

RESUMEN

We have previously identified a cis-acting sequence in the proximal promoter of the fibroblast growth factor receptor 3 (FGFR3) gene that strongly activates transcription in chondrocytic cells. Here we report that the transcriptional activity of this sequence (FRE3) requires serum response factor and its cognate recognition motif, serum response element. Although the FRE3 contains consensus sequence motifs for several transcription factors, the serum response element is paramount for the transcriptional activity of the FRE3. Additionally, the transcriptional activity of the proximal promoter of the FGFR3 gene is suppressed by mutation of the serum response element. Serum response factor binds to the FRE3 as evidenced by gel shift experiments and antibody supershift experiments and expression of a dominant negative form of serum response factor suppresses the activity of FRE3. Additionally, serum response factor binds to the FGFR3 gene in vivo, as demonstrated by chromatin immunoprecipitation. Serum response factor is an important regulator of cardiac, skeletal, and smooth muscle gene expression; these data suggest that serum response factor is also an important determinant of chondrocyte gene expression.


Asunto(s)
Regulación de la Expresión Génica/genética , Proteínas Tirosina Quinasas/genética , Receptores de Factores de Crecimiento de Fibroblastos/genética , Factor de Respuesta Sérica/fisiología , Animales , Secuencia de Bases , Línea Celular , Condrocitos/fisiología , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas/genética , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos , Moldes Genéticos , Transcripción Genética/genética
10.
Cell ; 109(3): 271-4, 2002 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-12015976
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA