Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Evol Appl ; 17(7): e13746, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38957310

RESUMEN

The deliberate release of captive-bred individuals, the accidental escape of domesticated strains, or the invasion of closely related conspecifics into wild populations can all lead to introgressive hybridization, which poses a challenge for conservation and wildlife management. Rates of introgression and the magnitude of associated demographic impacts vary widely across ecological contexts. However, the reasons for this variation remain poorly understood. One rarely considered phenomenon in this context is soft selection, wherein relative trait values determine success in intraspecific competition for a limiting resource. Here we develop an eco-genetic model explicitly focussed on understanding the influence of such competitive interactions on the eco-evolutionary dynamics of wild populations experiencing an influx of foreign/domesticated individuals. The model is applicable to any taxon that experiences natural or human-mediated inputs of locally maladapted genotypes ('intrusion'), in addition to phenotype-dependent competition for a limiting resource (e.g. breeding sites, feeding territories). The effects of both acute and chronic intrusion depended strongly on the relative competitiveness of intruders versus locals. When intruders were competitively inferior, density-dependent regulation limited their reproductive success (ability to compete for limited spawning sites), which prevented strong introgression or population declines from occurring. In contrast, when intruders were competitively superior, this amplified introgression and led to increased maladaptation of the admixed population. This had negative consequences for population size and population viability. The results were sensitive to the intrusion level, the magnitude of reproductive excess, trait heritability and the extent to which intruders were maladapted relative to locals. Our findings draw attention to under-appreciated interactions between phenotype-dependent competitive interactions and maladaptive hybridization, which may be critical to determining the impact captive breeding programmes and domesticated escapees can have on otherwise self-sustaining wild populations.

2.
J Fish Biol ; 104(3): 647-661, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37907447

RESUMEN

Global warming has been implicated in widespread demographic changes in Atlantic salmon Salmo salar populations, but projections of life-history responses to future climate change are lacking. Here, we first exploit multiple decades of climate and biological data from the Burrishoole catchment in the west of Ireland to model statistical relationships between atmospheric variables, water temperature, and freshwater growth of juvenile Atlantic salmon. We then use this information to project potential changes in juvenile growth and life-history scheduling under three shared socioeconomic pathway and representative concentration pathway scenarios from 1961 to 2100, based on an ensemble of five climate models. Historical water temperatures were well predicted with a recurrent neural network, using observation-based atmospheric forcing data. Length-at-age was in turn also well predicted by cumulative growing degree days calculated from these water temperatures. Most juveniles in the Burrishoole population migrated to sea as 2-year-old smolts, but our future projections indicate that the system should start producing a greater proportion of 1-year-old smolts, as increasingly more juveniles cross a size-based threshold in their first summer for smoltification the following spring. Those failing to cross the size-based threshold will instead become 2-year-old smolts, but at a larger length relative to 2-year-old smolts observed currently, owing to greater overall freshwater growth opportunity. These changes in age- and size-at-seaward migration could have cascading effects on age- and size-at-maturity and reproductive output. Consequently, the seemingly small changes that our results demonstrate have the potential to cause significant shifts in population dynamics over the full life cycle. This workflow is highly applicable across the range of the Atlantic salmon, as well as to other anadromous species, as it uses openly accessible climate data and a length-at-age model with minimal input requirements, fostering improved general understanding of phenotypic and demographic responses to climate change and management implications.


Asunto(s)
Calentamiento Global , Salmo salar , Animales , Ríos , Migración Animal/fisiología , Agua Dulce , Agua
3.
J Fish Biol ; 102(6): 1327-1339, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36911993

RESUMEN

Genetic identity analysis and PIT (passive integrated transponder) tagging were used to examine the freshwater return rates and phenotypic characteristics of n = 1791 downstream migrating juvenile Salmo trutta in the Burrishoole catchment (northwest Ireland) across the period September 2017 to December 2020. In this system, juveniles out-migrate (move from freshwater into brackish or marine habitats) in every month of the year, with distinct seasonal peaks in spring (March through June; mostly silvered smolts) and autumn (September through December; mostly younger, unsilvered fry or parr). Both types exhibited a sex-bias towards females, which was stronger in spring (78% females) than in autumn outmigrants (67%). Sixty-nine returning fish were matched back to previous juvenile outmigrants, and similar return rates were found for spring outmigrants (5.0%), autumn outmigrants (3.3%) and fish that out-migrated outside of spring or autumn (2.8%). Spring and autumn outmigrants returned at similar dates (typically mid to late July), but autumn fish were away for longer periods (median = 612 days; spring outmigrants = 104 days). Autumn outmigrants were 25% smaller than spring outmigrants at outmigration and 6% smaller on their return, and within both groups smaller/younger outmigrants spent longer away than larger/older outmigrants. Autumn outmigrants were more likely to return unsilvered as "slob" trout (84%) than spring outmigrants (31%), suggesting they make greater use of brackish habitats that might be safer, but less productive, than fully marine habitats. Nonetheless, both types also produced silvered "sea trout" (≥1+ sea-age), implying neither is locked into a single life-history strategy. The findings emphasise that autumn outmigrants and the transitional habitats that support their persistence should not be overlooked in salmonid management and conservation.


Asunto(s)
Migración Animal , Agua Dulce , Femenino , Animales , Masculino , Estaciones del Año , Trucha , Demografía
4.
Evol Appl ; 15(5): 773-789, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35603024

RESUMEN

Males and females are often subject to different and even opposing selection pressures. When a given trait has a shared genetic basis between the sexes, sexual conflict (antagonism) can arise. This can result in significant individual-level fitness consequences that might also affect population performance, whilst anthropogenic environmental change can further exacerbate maladaptation in one or both sexes driven by sexual antagonism. Here, we develop a genetically explicit eco-evolutionary model using an agent-based framework to explore how a population of a facultatively migratory fish species (brown trout Salmo trutta) adapts to environmental change across a range of intersex genetic correlations for migration propensity, which influence the magnitude of sexual conflict. Our modelled focal trait represents a condition threshold governing whether individuals adopt a resident or anadromous (sea migration) tactic. Anadromy affords potential size-mediated reproductive advantages to both males and females due to improved feeding opportunities at sea, but these can be undermined by high background marine mortality and survival/growth costs imposed by marine parasites (sea lice). We show that migration tactic frequency for a given set of environmental conditions is strongly influenced by the intersex genetic correlation, such that one sex can be dragged off its optimum more than the other. When this occurred in females in our model, population productivity was substantially reduced, but eco-evolutionary outcomes were altered by allowing for sneaking behaviour in males. We discuss real-world implications of our work given that anadromous salmonids are regularly challenged by sea lice infestations, which might act synergistically with other stressors such as climate change or fishing that impact marine performance, driving populations towards residency and potentially reduced resilience.

5.
Microbiol Spectr ; 10(3): e0195321, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35532227

RESUMEN

Alpha mannose-oligosaccharide (MOS) prebiotics are widely deployed in animal agriculture as immunomodulators as well as to enhance growth and gut health. Their mode of action is thought to be mediated through their impact on host microbial communities and their associated metabolism. Bio-Mos is a commercially available prebiotic currently used in the agri-feed industry, but studies show contrasting results of its effect on fish performance and feed efficiency. Thus, detailed studies are needed to investigate the effect of MOS supplements on the fish microbiome to enhance our understanding of the link between MOS and gut health. To assess Bio-Mos for potential use as a prebiotic growth promoter in salmonid aquaculture, we have modified an established Atlantic salmon in vitro gut model, SalmoSim, to evaluate its impact on the host microbial communities. The microbial communities obtained from ceca compartments from four adult farmed salmon were inoculated in biological triplicate reactors in SalmoSim. Prebiotic treatment was supplemented for 20 days, followed by a 6-day washout period. Inclusion of Bio-Mos in the media resulted in a significant increase in formate (P = 0.001), propionate (P = 0.037) and 3-methyl butanoic acid (P = 0.024) levels, correlated with increased abundances of several, principally, anaerobic microbial genera (Fusobacterium, Agarivorans, Pseudoalteromonas). DNA metabarcoding with the 16S rDNA marker confirmed a significant shift in microbial community composition in response to Bio-Mos supplementation with observed increase in lactic acid producing Carnobacterium. In conjunction with previous in vivo studies linking enhanced volatile fatty acid production alongside MOS supplementation to host growth and performance, our data suggest that Bio-Mos may be of value in salmonid production. Furthermore, our data highlights the potential role of in vitro gut models to complementin vivo trials of microbiome modulators. IMPORTANCE In this paper we report the results of the impact of a prebiotic (alpha-MOS supplementation) on microbial communities, using an in vitro simulator of the gut microbial environment of the Atlantic salmon. Our data suggest that Bio-Mos may be of value in salmonid production as it enhances volatile fatty acid production by the microbiota from salmon pyloric ceca and correlates with a significant shift in microbial community composition with observed increase in lactic acid producing Carnobacterium. In conjunction with previous in vivo studies linking enhanced volatile fatty acid production alongside MOS supplementation to host growth and performance, our data suggest that Bio-Mos may be of value in salmonid production. Furthermore, our data highlights the potential role of in vitro gut models to augment in vivo trials of microbiome modulators.


Asunto(s)
Microbioma Gastrointestinal , Salmo salar , Alimentación Animal/análisis , Animales , Microbioma Gastrointestinal/genética , Ácido Láctico , Mananos , Oligosacáridos , Prebióticos
6.
Evol Appl ; 14(9): 2319-2332, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34603501

RESUMEN

Domestication leads to changes in traits that are under directional selection in breeding programmes, though unintentional changes in nonproduction traits can also arise. In offspring of escaping fish and any hybrid progeny, such unintentionally altered traits may reduce fitness in the wild. Atlantic salmon breeding programmes were established in the early 1970s, resulting in genetic changes in multiple traits. However, the impact of domestication on eye size has not been studied. We measured body size corrected eye size in 4000 salmon from six common garden experiments conducted under artificial and natural conditions, in freshwater and saltwater environments, in two countries. Within these common gardens, offspring of domesticated and wild parents were crossed to produce 11 strains, with varying genetic backgrounds (wild, domesticated, F1 hybrids, F2 hybrids and backcrosses). Size-adjusted eye size was influenced by both genetic and environmental factors. Domesticated fish reared under artificial conditions had smaller adjusted eye size when compared to wild fish reared under identical conditions, in both the freshwater and marine environments, and in both Irish and Norwegian experiments. However, in parr that had been introduced into a river environment shortly after hatching and sampled at the end of their first summer, differences in adjusted eye size observed among genetic groups were of a reduced magnitude and were nonsignificant in 2-year-old sea migrating smolts sampled in the river immediately prior to sea entry. Collectively, our findings could suggest that where natural selection is present, individuals with reduced eye size are maladapted and consequently have reduced fitness, building on our understanding of the mechanisms that underlie a well-documented reduction in the fitness of the progeny of domesticated salmon, including hybrid progeny, in the wild.

7.
Proc Biol Sci ; 288(1958): 20211509, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34521251

RESUMEN

Metabolism defines the energetic cost of life, yet we still know relatively little about why intraspecific variation in metabolic rate arises and persists. Spatio-temporal variation in selection potentially maintains differences, but relationships between metabolic traits (standard metabolic rate (SMR), maximum metabolic rate (MMR), and aerobic scope) and fitness across contexts are unresolved. We show that associations between SMR, MMR, and growth rate (a key fitness-related trait) vary depending on the thermal regime (a potential selective agent) in offspring of wild-sampled brown trout from two populations reared for approximately 15 months in either a cool or warm (+1.8°C) regime. SMR was positively related to growth in the cool, but negatively related in the warm regime. The opposite patterns were found for MMR and growth associations (positive in warm, negative in the cool regime). Mean SMR, but not MMR, was lower in warm regimes within both populations (i.e. basal metabolic costs were reduced at higher temperatures), consistent with an adaptive acclimation response that optimizes growth. Metabolic phenotypes thus exhibited a thermally sensitive metabolic 'floor' and a less flexible metabolic 'ceiling'. Our findings suggest a role for growth-related fluctuating selection in shaping patterns of metabolic variation that is likely important in adapting to climate change.


Asunto(s)
Metabolismo Basal , Trucha , Aclimatación , Animales , Metabolismo Energético , Fenotipo
8.
Microbiome ; 9(1): 179, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34465363

RESUMEN

BACKGROUND: The aquaculture sector now accounts for almost 50% of all fish for human consumption and is anticipated to provide 62% by 2030. Innovative strategies are being sought to improve fish feeds and feed additives to enhance fish performance, welfare, and the environmental sustainability of the aquaculture industry. There is still a lack of knowledge surrounding the importance and functionality of the teleost gut microbiome in fish nutrition. In vitro gut model systems might prove a valuable tool to study the effect of feed, and additives, on the host's microbial communities. Several in vitro gut models targeted at monogastric vertebrates are now in operation. Here, we report the development of an Atlantic salmon gut model, SalmoSim, to simulate three gut compartments (stomach, pyloric caecum, and midgut) and associated microbial communities. RESULTS: The gut model was established in a series of linked bioreactors seeded with biological material derived from farmed adult marine-phase salmon. We first aimed to achieve a stable microbiome composition representative of founding microbial communities derived from Atlantic salmon. Then, in biological triplicate, the response of the in vitro system to two distinct dietary formulations (fishmeal and fishmeal free) was compared to a parallel in vivo trial over 40 days. Metabarcoding based on 16S rDNA sequencing qPCR, ammoniacal nitrogen, and volatile fatty acid measurements were undertaken to survey the microbial community dynamics and function. SalmoSim microbiomes were indistinguishable (p = 0.230) from their founding inocula at 20 days and the most abundant genera (e.g., Psycrobacter, Staphylococcus, Pseudomonas) proliferated within SalmoSim (OTUs accounting for 98% of all reads shared with founding communities). Real salmon and SalmoSim responded similarly to the introduction of novel feed, with majority of the taxa (96% Salmon, 97% SalmoSim) unaffected, while a subset of taxa (e.g., a small fraction of Psychrobacter) was differentially affected across both systems. Consistent with a low impact of the novel feed on microbial fermentative activity, volatile fatty acid profiles were not significantly different in SalmoSim pre- and post-feed switch. CONCLUSION: By establishing stable and representative salmon gut communities, this study represents an important step in the development of an in vitro gut system as a tool for the improvement of fish nutrition and welfare. The steps of the system development described in this paper can be used as guidelines to develop various other systems representing other fish species. These systems, including SalmoSim, aim to be utilised as a prescreening tool for new feed ingredients and additives, as well as being used to study antimicrobial resistance and transfer and fundamental ecological processes that underpin microbiome dynamics and assembly. Video abstract.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Salmo salar , Alimentación Animal/análisis , Animales , Tracto Gastrointestinal , Humanos
9.
Ecol Evol ; 11(12): 8347-8362, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34188891

RESUMEN

The occurrence of alternative morphs within populations is common, but the underlying molecular mechanisms remain poorly understood. Many animals, for example, exhibit facultative migration, where two or more alternative migratory tactics (AMTs) coexist within populations. In certain salmonid species, some individuals remain in natal rivers all their lives, while others (in particular, females) migrate to sea for a period of marine growth. Here, we performed transcriptional profiling ("RNA-seq") of the brain and liver of male and female brown trout to understand the genes and processes that differentiate between migratory and residency morphs (AMT-associated genes) and how they may differ in expression between the sexes. We found tissue-specific differences with a greater number of genes expressed differentially in the liver (n = 867 genes) compared with the brain (n = 10) between the morphs. Genes with increased expression in resident livers were enriched for Gene Ontology terms associated with metabolic processes, highlighting key molecular-genetic pathways underlying the energetic requirements associated with divergent migratory tactics. In contrast, smolt-biased genes were enriched for biological processes such as response to cytokines, suggestive of possible immune function differences between smolts and residents. Finally, we identified evidence of sex-biased gene expression for AMT-associated genes in the liver (n = 12) but not the brain. Collectively, our results provide insights into tissue-specific gene expression underlying the production of alternative life histories within and between the sexes, and point toward a key role for metabolic processes in the liver in mediating divergent physiological trajectories of migrants versus residents.

10.
Front Immunol ; 12: 568729, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33717060

RESUMEN

Vertebrates have evolved a complex immune system required for the identification of and coordinated response to harmful pathogens. Migratory species spend periods of their life-cycle in more than one environment, and their immune system consequently faces a greater diversity of pathogens residing in different environments. In facultatively anadromous salmonids, individuals may spend parts of their life-cycle in freshwater and marine environments. For species such as the brown trout Salmo trutta, sexes differ in their life-histories with females more likely to migrate to sea while males are more likely to stay and complete their life-cycle in their natal river. Salmonids have also undergone a lineage-specific whole genome duplication event, which may provide novel immune innovations but our current understanding of the differences in salmonid immune expression between the sexes is limited. We characterized the brown trout immune gene repertoire, identifying a number of canonical immune genes in non-salmonid teleosts to be duplicated in S. trutta, with genes involved in innate and adaptive immunity. Through genome-wide transcriptional profiling ("RNA-seq") of male and female livers to investigate sex differences in gene expression amplitude and alternative splicing, we identified immune genes as being generally male-biased in expression. Our study provides important insights into the evolutionary consequences of whole genome duplication events on the salmonid immune gene repertoire and how the sexes differ in constitutive immune expression.


Asunto(s)
Evolución Biológica , Regulación de la Expresión Génica , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Salmonidae/genética , Salmonidae/inmunología , Animales , Biología Computacional/métodos , Evolución Molecular , Femenino , Perfilación de la Expresión Génica , Genómica/métodos , Masculino , Especificidad de Órganos/genética , Trucha/genética , Trucha/inmunología
11.
Proc Biol Sci ; 287(1937): 20201671, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33081620

RESUMEN

The release of captive-bred animals into the wild is commonly practised to restore or supplement wild populations but comes with a suite of ecological and genetic consequences. Vast numbers of hatchery-reared fish are released annually, ostensibly to restore/enhance wild populations or provide greater angling returns. While previous studies have shown that captive-bred fish perform poorly in the wild relative to wild-bred conspecifics, few have measured individual lifetime reproductive success (LRS) and how this affects population productivity. Here, we analyse data on Atlantic salmon from an intensely studied catchment into which varying numbers of captive-bred fish have escaped/been released and potentially bred over several decades. Using a molecular pedigree, we demonstrate that, on average, the LRS of captive-bred individuals was only 36% that of wild-bred individuals. A significant LRS difference remained after excluding individuals that left no surviving offspring, some of which might have simply failed to spawn, consistent with transgenerational effects on offspring survival. The annual productivity of the mixed population (wild-bred plus captive-bred) was lower in years where captive-bred fish comprised a greater fraction of potential spawners. These results bolster previous empirical and theoretical findings that intentional stocking, or non-intentional escapees, threaten, rather than enhance, recipient natural populations.


Asunto(s)
Explotaciones Pesqueras , Salmo salar/fisiología , Animales , Animales Salvajes , Acuicultura , Cruzamiento , Reproducción
12.
Conserv Physiol ; 8(1): coaa096, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33093959

RESUMEN

Metabolic rates vary hugely within and between populations, yet we know relatively little about factors causing intraspecific variation. Since metabolic rate determines the energetic cost of life, uncovering these sources of variation is important to understand and forecast responses to environmental change. Moreover, few studies have examined factors causing intraspecific variation in metabolic flexibility. We explore how extrinsic environmental conditions and intrinsic factors contribute to variation in metabolic traits in brown trout, an iconic and polymorphic species that is threatened across much of its native range. We measured metabolic traits in offspring from two wild populations that naturally show life-history variation in migratory tactics (one anadromous, i.e. sea-migratory, one non-anadromous) that we reared under either optimal food or experimental conditions of long-term food restriction (lasting between 7 and 17 months). Both populations showed decreased standard metabolic rates (SMR-baseline energy requirements) under low food conditions. The anadromous population had higher maximum metabolic rate (MMR) than the non-anadromous population, and marginally higher SMR. The MMR difference was greater than SMR and consequently aerobic scope (AS) was higher in the anadromous population. MMR and AS were both higher in males than females. The anadromous population also had higher AS under low food compared to optimal food conditions, consistent with population-specific effects of food restriction on AS. Our results suggest different components of metabolic rate can vary in their response to environmental conditions, and according to intrinsic (population-background/sex) effects. Populations might further differ in their flexibility of metabolic traits, potentially due to intrinsic factors related to life history (e.g. migratory tactics). More comparisons of populations/individuals with divergent life histories will help to reveal this. Overall, our study suggests that incorporating an understanding of metabolic trait variation and flexibility and linking this to life history and demography will improve our ability to conserve populations experiencing global change.

13.
G3 (Bethesda) ; 10(9): 2903-2910, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32641450

RESUMEN

Currently available genome assemblies for Atlantic cod (Gadus morhua) have been constructed from fish belonging to the Northeast Arctic Cod (NEAC) population; a migratory population feeding in the Barents Sea. These assemblies have been crucial for the development of genetic markers which have been used to study population differentiation and adaptive evolution in Atlantic cod, pinpointing four discrete islands of genomic divergence located on linkage groups 1, 2, 7 and 12. In this paper, we present a high-quality reference genome from a male Atlantic cod representing a southern population inhabiting the Celtic sea. The genome assembly (gadMor_Celtic) was produced from long-read nanopore data and has a combined contig length of 686 Mb with an N50 of 10 Mb. Integrating contigs with genetic linkage mapping information enabled us to construct 23 chromosome sequences which mapped with high confidence to the latest NEAC population assembly (gadMor3) and allowed us to characterize, to an extent not previously reported large chromosomal inversions on linkage groups 1, 2, 7 and 12. In most cases, inversion breakpoints could be located within single nanopore contigs. Our results suggest the presence of inversions in Celtic cod on linkage groups 6, 11 and 21, although these remain to be confirmed. Further, we identified a specific repetitive element that is relatively enriched at predicted centromeric regions. Our gadMor_Celtic assembly provides a resource representing a 'southern' cod population which is complementary to the existing 'northern' population based genome assemblies and represents the first step toward developing pan-genomic resources for Atlantic cod.


Asunto(s)
Gadus morhua , Nanoporos , Animales , Cromosomas/genética , Gadus morhua/genética , Genoma , Humanos , Masculino , Polimorfismo de Nucleótido Simple
14.
Ecol Evol ; 10(4): 1762-1783, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32128115

RESUMEN

The degree of natal philopatry relative to natal dispersal in animal populations has important demographic and genetic consequences and often varies substantially within species. In salmonid fishes, lakes have been shown to have a strong influence on dispersal and gene flow within catchments; for example, populations spawning in inflow streams are often reproductively isolated and genetically distinct from those spawning in relatively distant outflow streams. Less is known, however, regarding the level of philopatry and genetic differentiation occurring at microgeographic scales, for example, where inflow and outflow streams are separated by very small expanses of lake habitat. Here, we investigated the interplay between genetic differentiation and fine-scale spawning movements of brown trout between their lake-feeding habitat and two spawning streams (one inflow, one outflow, separated by <100 m of lake habitat). Most (69.2%) of the lake-tagged trout subsequently detected during the spawning period were recorded in just one of the two streams, consistent with natal fidelity, while the remainder were detected in both streams, creating an opportunity for these individuals to spawn in both natal and non-natal streams. The latter behavior was supported by genetic sibship analysis, which revealed several half-sibling dyads containing one individual that was sampled as a fry in the outflow and another that was sampled as fry in the inflow. Genetic clustering analyses in conjunction with telemetry data suggested that asymmetrical dispersal patterns were occurring, with natal fidelity being more common among individuals originating from the outflow than the inflow stream. This was corroborated by Bayesian analysis of gene flow, which indicated significantly higher rates of gene flow from the inflow into the outflow than vice versa. Collectively, these results reveal how a combination of telemetry and genetics can identify distinct reproductive behaviors and associated asymmetries in natal dispersal that produce subtle, but nonetheless biologically relevant, population structuring at microgeographic scales.

15.
Glob Chang Biol ; 26(5): 2878-2896, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32103581

RESUMEN

With rapid global change, organisms in natural systems are exposed to a multitude of stressors that likely co-occur, with uncertain impacts. We explored individual and cumulative effects of co-occurring environmental stressors on the striking, yet poorly understood, phenomenon of facultative migration. We reared offspring of a brown trout population that naturally demonstrates facultative anadromy (sea migration), under different environmental stressor treatments and measured life history responses in terms of migratory tactics and freshwater maturation rates. Juvenile fish were exposed to reduced food availability, temperatures elevated to 1.8°C above natural conditions or both treatments in combination over 18 months of experimental tank rearing. When considered in isolation, reduced food had negative effects on the size, mass and condition of fish across the experiment. We detected variable effects of warm temperatures (negative effects on size and mass, but positive effect on lipids). When combined with food restriction, temperature effects on these traits were less pronounced, implying antagonistic stressor effects on morphological traits. Stressors combined additively, but had opposing effects on life history tactics: migration increased and maturation rates decreased under low food conditions, whereas the opposite occurred in the warm temperature treatment. Not all fish had expressed maturation or migration tactics by the end of the study, and the frequency of these 'unassigned' fish was higher in food deprivation treatments, but lower in warm treatments. Fish showing migration tactics were smaller and in poorer condition than fish showing maturation tactics, but were similar in size to unassigned fish. We further detected effects of food restriction on hypo-osmoregulatory function of migrants that may influence the fitness benefits of the migratory tactic at sea. We also highlight that responses to multiple stressors may vary depending on the response considered. Collectively, our results indicate contrasting effects of environmental stressors on life history trajectories in a facultatively migratory species.


Asunto(s)
Migración Animal , Trucha , Animales , Agua Dulce , Temperatura
16.
Ecol Evol ; 9(12): 7096-7111, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31312431

RESUMEN

Comparing observed versus theoretically expected evolutionary responses is important for our understanding of the evolutionary process, and for assessing how species may cope with anthropogenic change. Here, we document directional selection for larger female size in Atlantic salmon, using pedigree-derived estimates of lifetime reproductive success as a fitness measure. We show the trait is heritable and, thus, capable of responding to selection. The Breeder's Equation, which predicts microevolution as the product of phenotypic selection and heritability, predicted evolution of larger size. This was at odds, however, with the observed lack of either phenotypic or genetic temporal trends in body size, a so-called "paradox of stasis." To investigate this paradox, we estimated the additive genetic covariance between trait and fitness, which provides a prediction of evolutionary change according to Robertson's secondary theorem of selection (STS) that is unbiased by missing variables. The STS prediction was consistent with the observed stasis. Decomposition of phenotypic selection gradients into genetic and environmental components revealed a potential upward bias, implying unmeasured factors that covary with trait and fitness. These results showcase the power of pedigreed, wild population studies-which have largely been limited to birds and mammals-to study evolutionary processes on contemporary timescales.

17.
J Fish Biol ; 95(3): 692-718, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31197849

RESUMEN

Brown trout Salmo trutta is endemic to Europe, western Asia and north-western Africa; it is a prominent member of freshwater and coastal marine fish faunas. The species shows two resident (river-resident, lake-resident) and three main facultative migratory life histories (downstream-upstream within a river system, fluvial-adfluvial potamodromous; to and from a lake, lacustrine-adfluvial (inlet) or allacustrine (outlet) potamodromous; to and from the sea, anadromous). River-residency v. migration is a balance between enhanced feeding and thus growth advantages of migration to a particular habitat v. the costs of potentially greater mortality and energy expenditure. Fluvial-adfluvial migration usually has less feeding improvement, but less mortality risk, than lacustrine-adfluvial or allacustrine and anadromous, but the latter vary among catchments as to which is favoured. Indirect evidence suggests that around 50% of the variability in S. trutta migration v. residency, among individuals within a population, is due to genetic variance. This dichotomous decision can best be explained by the threshold-trait model of quantitative genetics. Thus, an individual's physiological condition (e.g., energy status) as regulated by environmental factors, genes and non-genetic parental effects, acts as the cue. The magnitude of this cue relative to a genetically predetermined individual threshold, governs whether it will migrate or sexually mature as a river-resident. This decision threshold occurs early in life and, if the choice is to migrate, a second threshold probably follows determining the age and timing of migration. Migration destination (mainstem river, lake, or sea) also appears to be genetically programmed. Decisions to migrate and ultimate destination result in a number of subsequent consequential changes such as parr-smolt transformation, sexual maturity and return migration. Strong associations with one or a few genes have been found for most aspects of the migratory syndrome and indirect evidence supports genetic involvement in all parts. Thus, migratory and resident life histories potentially evolve as a result of natural and anthropogenic environmental changes, which alter relative survival and reproduction. Knowledge of genetic determinants of the various components of migration in S. trutta lags substantially behind that of Oncorhynchus mykiss and other salmonines. Identification of genetic markers linked to migration components and especially to the migration-residency decision, is a prerequisite for facilitating detailed empirical studies. In order to predict effectively, through modelling, the effects of environmental changes, quantification of the relative fitness of different migratory traits and of their heritabilities, across a range of environmental conditions, is also urgently required in the face of the increasing pace of such changes.


Asunto(s)
Migración Animal , Trucha/fisiología , Animales , Ecosistema , Metabolismo Energético , Femenino , Internado y Residencia , Lagos , Masculino , Sitios de Carácter Cuantitativo , Reproducción , Ríos , Conducta Sexual Animal , Trucha/genética
18.
Mol Ecol Resour ; 19(5): 1106-1114, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31177615

RESUMEN

We report the first application of CRISPR-Cas technology to single species detection from environmental DNA (eDNA). Organisms shed and excrete DNA into their environment such as in skin cells and faeces, referred to as environmental DNA (eDNA). Utilising eDNA allows noninvasive monitoring with increased specificity and sensitivity. Current methods primarily employ PCR-based techniques to detect a given species from eDNA samples, posing a logistical challenge for on-site monitoring and potential adaptation to biosensor devices. We have developed an alternative method; coupling isothermal amplification to a CRISPR-Cas12a detection system. This utilises the collateral cleavage activity of Cas12a, a ribonuclease guided by a highly specific single CRISPR RNA. We used the target species Salmo salar as a proof-of-concept test of the specificity of the assay among closely related species and to show the assay is successful at a single temperature of 37°C with signal detection at 535 nM. The specific assay, detects at attomolar sensitivity with rapid detection rates (<2.5 hr). This approach simplifies the challenge of building a biosensor device for rapid target species detection in the field and can be easily adapted to detect any species from eDNA samples from a variety of sources enhancing the capabilities of eDNA as a tool for monitoring biodiversity.


Asunto(s)
Biota , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN Ambiental/genética , Edición Génica/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Salmo salar/clasificación , Salmo salar/genética , Animales , ADN Ambiental/análisis , Sensibilidad y Especificidad , Temperatura
19.
BMC Genomics ; 18(1): 484, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28655320

RESUMEN

We describe an emerging initiative - the 'Functional Annotation of All Salmonid Genomes' (FAASG), which will leverage the extensive trait diversity that has evolved since a whole genome duplication event in the salmonid ancestor, to develop an integrative understanding of the functional genomic basis of phenotypic variation. The outcomes of FAASG will have diverse applications, ranging from improved understanding of genome evolution, to improving the efficiency and sustainability of aquaculture production, supporting the future of fundamental and applied research in an iconic fish lineage of major societal importance.


Asunto(s)
Acuicultura , Conservación de los Recursos Naturales , Genómica , Internacionalidad , Anotación de Secuencia Molecular , Salmonidae/genética , Animales , Evolución Molecular , Genómica/economía , Genómica/normas , Fenotipo , Filogenia
20.
R Soc Open Sci ; 3(1): 150565, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26909185

RESUMEN

This study examines the potential of next-generation sequencing based 'genotyping-by-sequencing' (GBS) of microsatellite loci for rapid and cost-effective genotyping in large-scale population genetic studies. The recovery of individual genotypes from large sequence pools was achieved by PCR-incorporated combinatorial barcoding using universal primers. Three experimental conditions were employed to explore the possibility of using this approach with existing and novel multiplex marker panels and weighted amplicon mixture. The GBS approach was validated against microsatellite data generated by capillary electrophoresis. GBS allows access to the underlying nucleotide sequences that can reveal homoplasy, even in large datasets and facilitates cross laboratory transfer. GBS of microsatellites, using individual combinatorial barcoding, is potentially faster and cheaper than current microsatellite approaches and offers better and more data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA