Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Arch Osteoporos ; 17(1): 123, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36107272

RESUMEN

This study describes that low bone density is prevalent in premenopausal Saudi women, especially women of normal weight and vitamin D deficiency. Although BMD is higher in obese young women, this may not be beneficial later in life in conjunction with persistent vitamin D deficiency. INTRODUCTION: Not attaining peak bone mass is one crucial factor contributing to the risk of developing osteoporosis and suffering fractures in later life. The objectives of this study were to describe the normal range of bone mineral density (BMD) and bone mineral content (BMC) in premenopausal Saudi women in relation to obesity and vitamin D insufficiency. METHODS: A cross-sectional study involving 312 healthy Saudi women aged 20-40. All women were clinically examined. BMD (g/cm2) and BMC (g) assessed at total body (TB), femoral neck (FN) and lumbar spine (LS) were performed using dual-energy X-ray absorptiometry (DXA). Obesity was defined as BMI ≥ 30 kg/m2 and vitamin D deficiency defined as 25(OH)D < 50 nmol/L. RESULTS: Almost half of the studied women were obese, and the majority (86.2%) were deficient in vitamin D. Mean BMD in TB 1.060 ± 0.091, FN 0.918 ± 0.153 and LS 1.118 ± 0.123 g/cm2, while TB-BMC 2077 ± 272 g. When classified by BMI, the proportion with low bone density was 2-3 times higher among the normal weight compared to the obese women, p < 0.001. In the cohort overall, ~ 19% of these young premenopausal women had osteopenia or osteoporosis at the femoral neck, but 26% in normal weight, vitamin D deficient women. CONCLUSION: This study shows low bone density in premenopausal Saudi women, particularly those with normal weight. While obesity appears to confer some protection against vitamin D deficiency at this age, this is assumed to change in later life.


Asunto(s)
Osteoporosis , Deficiencia de Vitamina D , Densidad Ósea , Estudios Transversales , Femenino , Humanos , Obesidad/epidemiología , Osteoporosis/epidemiología , Osteoporosis/etiología , Arabia Saudita/epidemiología , Vitamina D , Deficiencia de Vitamina D/epidemiología
2.
Front Endocrinol (Lausanne) ; 12: 720728, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925226

RESUMEN

A synoptic overview of scientific methods applied in bone and associated research fields across species has yet to be published. Experts from the EU Cost Action GEMSTONE ("GEnomics of MusculoSkeletal Traits translational Network") Working Group 2 present an overview of the routine techniques as well as clinical and research approaches employed to characterize bone phenotypes in humans and selected animal models (mice and zebrafish) of health and disease. The goal is consolidation of knowledge and a map for future research. This expert paper provides a comprehensive overview of state-of-the-art technologies to investigate bone properties in humans and animals - including their strengths and weaknesses. New research methodologies are outlined and future strategies are discussed to combine phenotypic with rapidly developing -omics data in order to advance musculoskeletal research and move towards "personalised medicine".


Asunto(s)
Huesos/metabolismo , Genómica/métodos , Fenómenos Fisiológicos Musculoesqueléticos/genética , Animales , Huesos/patología , Redes Reguladoras de Genes/fisiología , Humanos , Ratones , Modelos Animales , Fenotipo , Proteómica/métodos , Pez Cebra
3.
Curr Osteoporos Rep ; 19(1): 58-65, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33420632

RESUMEN

PURPOSE OF REVIEW: This review outlines the scope of the problem in osteoporosis care and secondary fracture prevention and describes fracture prevention strategies, with a focus on the frail elderly. RECENT FINDINGS: Despite heightened awareness among patients and clinicians alike and the availability of efficacious anti-osteoporosis medications, osteoporosis is still underdiagnosed and undertreated. However, the introduction of systematic risk assessment and secondary fracture prevention programmes has gained momentum, and evidence of success is accumulating. We possess today the knowledge required to close the osteoporosis care gap. The basic components in a secondary prevention model are similar in all health care settings, number one being a dedicated fracture coordinator, with anti-osteoporosis medications and multifaceted falls prevention as cornerstones, particularly in the frailest, both in the near and long-term. Initiation of structured care pathways including the key elements - identification, investigation, intervention and follow-up of adherence - demonstrably reduces re-fracture rates and is cost-effective.


Asunto(s)
Conservadores de la Densidad Ósea/uso terapéutico , Anciano Frágil , Osteoporosis/prevención & control , Fracturas Osteoporóticas/prevención & control , Accidentes por Caídas/prevención & control , Anciano , Humanos , Prevención Primaria , Medición de Riesgo , Prevención Secundaria
4.
Gene ; 721S: 100009, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-34530989

RESUMEN

BACKGROUND AND AIM: The Receptor Activity Modifying Proteins (RAMPs) are a group of accessory proteins, of which there are three in humans, that interact with a number of G-protein coupled receptors (GPCR) and play various roles in regulation of endocrine signaling. Studies in RAMP3 knockout (KO) mice reveal an age related phenotype with altered metabolic regulation and high bone mass. To translate these findings into a clinically relevant perspective, we investigated the association between RAMP3 gene variants, body composition and bone phenotypes in two population-based cohorts of Swedish women. METHODS: Five single nucleotide polymorphisms (SNP) in the vicinity of the RAMP3 gene were genotyped in the PEAK-25 cohort (n = 1061; 25 years) and OPRA (n = 1044; 75 years). Bone mineral density (BMD), fat mass and lean mass (total body; regional) were measured by DXA at baseline, 5 and 10 year follow-up. RESULTS: BMD did not differ with RAMP3 genotype in either cohort, although fracture risk was increased in the elderly women (OR 2.695 [95% CI 1.514-4.801]). Fat mass tended to be higher with RAMP3 SNPs; although only in elderly women. In the young women, changes in BMI and fat mass between ages 25-35 differed by genotype (p = 0.001; p < 0.001). CONCLUSION: Variation in RAMP3 may contribute to age-related changes in body composition and risk of fracture.

5.
Gene X ; 2: 100009, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32550545

RESUMEN

BACKGROUND AND AIM: The Receptor Activity Modifying Proteins (RAMPs) are a group of accessory proteins, of which there are three in humans, that interact with a number of G-protein coupled receptors (GPCR) and play various roles in regulation of endocrine signaling. Studies in RAMP3 knockout (KO) mice reveal an age related phenotype with altered metabolic regulation and high bone mass. To translate these findings into a clinically relevant perspective, we investigated the association between RAMP3 gene variants, body composition and bone phenotypes in two population-based cohorts of Swedish women. METHODS: Five single nucleotide polymorphisms (SNP) in the vicinity of the RAMP3 gene were genotyped in the PEAK-25 cohort (n = 1061; 25 years) and OPRA (n = 1044; 75 years). Bone mineral density (BMD), fat mass and lean mass (total body; regional) were measured by DXA at baseline, 5 and 10 year follow-up. RESULTS: BMD did not differ with RAMP3 genotype in either cohort, although fracture risk was increased in the elderly women (OR 2.695 [95% CI 1.514-4.801]). Fat mass tended to be higher with RAMP3 SNPs; although only in elderly women. In the young women, changes in BMI and fat mass between ages 25-35 differed by genotype (p = 0.001; p < 0.001). CONCLUSION: Variation in RAMP3 may contribute to age-related changes in body composition and risk of fracture.

6.
J Clin Densitom ; 19(4): 477-484, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27067746

RESUMEN

Peak bone mass is normally reached in the third decade of life. Previously, in the population-based PEAK-25 cohort (n = 1061, age 25.5 ± 0.2), we demonstrated that bone mineral density in the population-based PEAK-25 cohort is comparatively high; therefore, this study aimed to determine if the calcaneus microarchitecture mirrored this. In the process, we describe normative quantitative ultrasound (QUS) values for 25-yr-old women and the relationship between QUS values and extremes of body weight. QUS variables speed of sound (SOS), broadband ultrasound attenuation (BUA), and stiffness index were measured. Young adult values were based on the manufacturer-supplied QUS reference values. Analyses were performed in the cohort as a whole, and additionally, to understand the relationship between body weight and QUS values in young women, the variables were categorized into octiles for weight or body mass index (BMI) and the lowest and highest octiles were compared. In the cohort, SOS values, reflecting bone density, were higher (108 ± 18%), whereas BUA values, reflecting bone complexity, were lower (90 ± 14%) compared to the young adult reference population. SOS did not correlate with body weight or BMI. In the cohort, overall correlations between BUA weight, and BMI were small and positive (Pearson's r coefficients 0.261 and 0.197, respectively; p < 0.001), although in the low-weight group, r coefficients were higher (r = 0.313 and 0.268; p < 0.05). In contrast, in the high-weight group, correlation with BUA values tended to be small, negative, and nonsignificant. Correlation between QUS and dual-energy X-ray absorptiometry-measured bone mineral density was low to moderate and significant at all skeletal sites (r = 0.37-0.52). Whereas coefficients tended to be higher in the low-weight group, the reverse was apparent for the low-BMI group. In these 25-yr-old women, a comparatively high dual-energy X-ray absorptiometry-measured bone mass is offset by less complex bone structures assessed by QUS. This may have implications for later osteoporosis assessment and future fracture risk.


Asunto(s)
Densidad Ósea/fisiología , Calcáneo/diagnóstico por imagen , Adulto , Índice de Masa Corporal , Peso Corporal , Calcáneo/anatomía & histología , Calcáneo/fisiología , Femenino , Humanos , Fracturas Osteoporóticas/diagnóstico , Valores de Referencia , Factores de Riesgo , Ultrasonografía
7.
Bone ; 55(2): 359-66, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23624291

RESUMEN

BACKGROUND: Prior studies have identified some risk factors for stress fracture in athletes and military recruits. OBJECTIVE: To determine whether historical factors, physical measures, biochemical variables of skeletal metabolism, genetic factors, bone density (BMD) and bone size could predict risk of stress fracture over 4 years in physically fit cadets at the US Military Academy (USMA). METHODS: Baseline surveys, assessments of height, weight, scores on the Army Physical Fitness Test, and peripheral BMD were obtained in all cadets (755 men, 136 women), and central BMD in a subset. Blood samples were analyzed for variables of calcium homeostasis, bone turnover, and selected hormones and genetic factors. Stress fractures were adjudicated by review of orthopedic notes and imaging reports. RESULTS: 5.7% of male and 19.1% of female cadets had at least 1 stress fracture (58% metatarsal and 29% tibial), most within 3 months of entry to USMA. In males, risk of stress fracture was higher in those who exercised <7 h per week during the prior year (RR 2.31; CI 1.29,4.12), and in those with smaller tibial cortical area (RR 1.12; CI 1.03,1.23), lower tibial bone mineral content (RR 1.11; CI 1.03,1.20) and smaller femoral neck diameter (RR 1.35, CI 1.01, 1.81). In women, higher stress fracture risk was seen in those with shorter time since menarche (RR 1.44 per year; CI 1.19, 1.73) and smaller femoral neck diameter (RR 1.16; CI 1.01, 1.33.). CONCLUSION: Although prior physical training in men, length of prior estrogen exposure in women and leg bone dimensions in both genders played a role, the maximum variance explained by all of these factors was below 10%. We conclude these factors play a minor role in the development of stress fractures in physically fit USMA cadets.


Asunto(s)
Fracturas por Estrés/epidemiología , Fracturas por Estrés/etiología , Adolescente , Densidad Ósea , Femenino , Humanos , Masculino , Personal Militar , Aptitud Física , Factores de Riesgo , Estados Unidos , Adulto Joven
8.
JAMA ; 299(11): 1277-90, 2008 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-18349089

RESUMEN

CONTEXT: Mutations in the low-density lipoprotein receptor-related protein 5 (LRP5) gene cause rare syndromes characterized by altered bone mineral density (BMD). More common LRP5 variants may affect osteoporosis risk in the general population. OBJECTIVE: To generate large-scale evidence on whether 2 common variants of LRP5 (Val667Met, Ala1330Val) and 1 variant of LRP6 (Ile1062Val) are associated with BMD and fracture risk. DESIGN AND SETTING: Prospective, multicenter, collaborative study of individual-level data on 37,534 individuals from 18 participating teams in Europe and North America. Data were collected between September 2004 and January 2007; analysis of the collected data was performed between February and May 2007. Bone mineral density was assessed by dual-energy x-ray absorptiometry. Fractures were identified via questionnaire, medical records, or radiographic documentation; incident fracture data were available for some cohorts, ascertained via routine surveillance methods, including radiographic examination for vertebral fractures. MAIN OUTCOME MEASURES: Bone mineral density of the lumbar spine and femoral neck; prevalence of all fractures and vertebral fractures. RESULTS: The Met667 allele of LRP5 was associated with reduced lumbar spine BMD (n = 25,052 [number of participants with available data]; 20-mg/cm2 lower BMD per Met667 allele copy; P = 3.3 x 10(-8)), as was the Val1330 allele (n = 24,812; 14-mg/cm2 lower BMD per Val1330 copy; P = 2.6 x 10(-9)). Similar effects were observed for femoral neck BMD, with a decrease of 11 mg/cm2 (P = 3.8 x 10(-5)) and 8 mg/cm2 (P = 5.0 x 10(-6)) for the Met667 and Val1330 alleles, respectively (n = 25 193). Findings were consistent across studies for both LRP5 alleles. Both alleles were associated with vertebral fractures (odds ratio [OR], 1.26; 95% confidence interval [CI], 1.08-1.47 for Met667 [2001 fractures among 20 488 individuals] and OR, 1.12; 95% CI, 1.01-1.24 for Val1330 [1988 fractures among 20,096 individuals]). Risk of all fractures was also increased with Met667 (OR, 1.14; 95% CI, 1.05-1.24 per allele [7876 fractures among 31,435 individuals)]) and Val1330 (OR, 1.06; 95% CI, 1.01-1.12 per allele [7802 fractures among 31 199 individuals]). Effects were similar when adjustments were made for age, weight, height, menopausal status, and use of hormone therapy. Fracture risks were partly attenuated by adjustment for BMD. Haplotype analysis indicated that Met667 and Val1330 variants both independently affected BMD. The LRP6 Ile1062Val polymorphism was not associated with any osteoporosis phenotype. All aforementioned associations except that between Val1330 and all fractures and vertebral fractures remained significant after multiple-comparison adjustments. CONCLUSIONS: Common LRP5 variants are consistently associated with BMD and fracture risk across different white populations. The magnitude of the effect is modest. LRP5 may be the first gene to reach a genome-wide significance level (a conservative level of significance [herein, unadjusted P < 10(-7)] that accounts for the many possible comparisons in the human genome) for a phenotype related to osteoporosis.


Asunto(s)
Densidad Ósea/genética , Fracturas Óseas/epidemiología , Fracturas Óseas/genética , Proteínas Relacionadas con Receptor de LDL/genética , Osteoporosis/epidemiología , Osteoporosis/genética , Polimorfismo de Nucleótido Simple , Cuello Femoral , Genotipo , Humanos , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad , Vértebras Lumbares , Fenotipo , Estudios Prospectivos , Factores de Riesgo , Fracturas de la Columna Vertebral/epidemiología , Fracturas de la Columna Vertebral/genética
9.
Bone ; 42(5): 969-81, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18284942

RESUMEN

INTRODUCTION: The TGFB1 gene which encodes transforming growth factor beta 1, is a strong candidate for susceptibility to osteoporosis and several studies have reported associations between bone mineral density (BMD), osteoporotic fractures and polymorphisms of TGFB1, although these studies have yielded conflicting results. METHODS: We investigated associations between TGFB1 polymorphisms and BMD and fracture in the GENOMOS study: a prospective multicenter study involving 10 European research studies including a total of 28,924 participants. Genotyping was conducted for known TGFB1 polymorphisms at the following sites: G-1639-A (G-800-A, rs1800468), C-1348-T (C-509-T, rs1800469), T29-C (Leu10Pro, rs1982073), G74-C (Arg25Pro, rs1800471) and C788-T (Thr263Ile, rs1800472). These polymorphisms were genotyped prospectively and methodology was standardized across research centers. Genotypes and haplotypes were related to BMD at the lumbar sine and femoral neck and fractures. RESULTS: There were no significant differences in either women or men at either skeletal site for any of the examined polymorphisms with the possible exception of a weak association with reduced BMD (-12 mg/cm2) in men with the T-1348 allele (p<0.05). None of the haplotypes was associated with BMD and none of the polymorphisms or haplotypes significantly affected overall risk of fractures, however, the odds ratio for incident vertebral fracture in carriers of the rare T788 allele was 1.64 (95% CI: 1.09-2.64), p<0.05. CONCLUSIONS: This study indicates that polymorphic variation in the TGFB1 gene does not play a major role in regulating BMD or susceptibility to fractures. The weak associations we observed between the C-1348-T and lumbar spine BMD in men and between C788-T and risk of incident vertebral fractures are of interest but could be chance findings and will need replication in future studies.


Asunto(s)
Osteoporosis/genética , Polimorfismo de Nucleótido Simple , Factor de Crecimiento Transformador beta1/genética , Adulto , Anciano , Anciano de 80 o más Años , Densidad Ósea , Estudios de Casos y Controles , Estudios de Cohortes , Estudios Transversales , Femenino , Cuello Femoral/metabolismo , Fracturas Óseas/genética , Frecuencia de los Genes , Genotipo , Humanos , Modelos Logísticos , Vértebras Lumbares/metabolismo , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Osteoporosis/metabolismo , Osteoporosis/patología , Factores Sexuales , Fracturas de la Columna Vertebral/genética
10.
J Bone Miner Res ; 22(2): 195-202, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17059371

RESUMEN

UNLABELLED: The TGFB1 gene is a strong functional candidate for regulating genetic susceptibility to osteoporosis. We studied five common polymorphisms of TGFB1 in relation to osteoporosis-related phenotypes in a population-based cohort of 2975 British women, but found no significant association with bone mass, bone loss, bone markers, or fracture. INTRODUCTION: The gene encoding TGFB1 is a strong functional candidate for genetic susceptibility to osteoporosis. Several polymorphisms have been identified in TGFB1, and previous work has suggested that allelic variants of TGFB1 may regulate BMD and susceptibility to osteoporotic fracture. MATERIALS AND METHODS: We studied the relationship between common polymorphisms of TGFB1 and several osteoporosis-related phenotypes including BMD at the lumbar spine and femoral neck, measured by DXA; bone loss over a 6-year period; biochemical markers of bone turnover (urinary free deoxypyridinoline and free pyridinoline/creatinine ratio and serum N-terminal propeptide of type 1 collagen), and fractures in a population-based study of 2975 women from the United Kingdom. Participants were genotyped for single nucleotide polymorphisms (SNPs) in the TGFB1 promoter (G-800A; rs1800468; C-509T; rs1800469), exon 1 (T29C; rs1982073 and G74C; rs1982073); and exon 5 (C788T; rs1800471) on PCR-generated fragments of genomic DNA. Haplotypes were constructed from genotype data using the PHASE software program, and genotypes and haplotypes were related to the phenotypes of interest using general linear model ANOVA, with correction for confounding factors including age, height, weight, menopausal status, hormone replacement therapy (HRT) use, physical activity score, and dietary calcium intake. RESULTS: The polymorphisms were in strong linkage disequilibrium, and four common haplotypes accounted for >95% of alleles at the locus. There was no association between individual SNPs and BMD, bone loss, or biochemical markers of bone turnover. Haplotype analysis showed a nominally significant association with femoral neck BMD (p = 0.042) and with incident osteoporotic fracture (p = 0.013), but these were not significant after correcting for multiple testing. CONCLUSIONS: Common polymorphic variants of the TGFB1 gene did not influence BMD or bone loss in this population.


Asunto(s)
Densidad Ósea/genética , Polimorfismo Genético , Vigilancia de la Población , Factor de Crecimiento Transformador beta/genética , Absorciometría de Fotón , Secuencia de Bases , Estudios de Cohortes , Cartilla de ADN , Femenino , Humanos , Escocia
11.
Ann Intern Med ; 145(4): 255-64, 2006 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-16908916

RESUMEN

BACKGROUND: Polymorphisms of the vitamin D receptor (VDR) gene have been implicated in the genetic regulation of bone mineral density (BMD). However, the clinical impact of these variants remains unclear. OBJECTIVE: To evaluate the relation between VDR polymorphisms, BMD, and fractures. DESIGN: Prospective multicenter large-scale association study. SETTING: The Genetic Markers for Osteoporosis consortium, involving 9 European research teams. PARTICIPANTS: 26,242 participants (18,405 women). MEASUREMENTS: Cdx2 promoter, FokI, BsmI, ApaI, and TaqI polymorphisms; BMD at the femoral neck and the lumbar spine by dual x-ray absorptiometry; and fractures. RESULTS: Comparisons of BMD at the lumbar spine and femoral neck showed nonsignificant differences less than 0.011 g/cm2 for any genotype with or without adjustments. A total of 6067 participants reported a history of fracture, and 2088 had vertebral fractures. For all VDR alleles, odds ratios for fractures were very close to 1.00 (range, 0.98 to 1.02) and collectively the 95% CIs ranged from 0.94 (lowest) to 1.07 (highest). For vertebral fractures, we observed a 9% (95% CI, 0% to 18%; P = 0.039) risk reduction for the Cdx2 A-allele (13% risk reduction in a dominant model). LIMITATIONS: The authors analyzed only selected VDR polymorphisms. Heterogeneity was detected in some analyses and may reflect some differences in collection of fracture data across cohorts. Not all fractures were related to osteoporosis. CONCLUSIONS: The FokI, BsmI, ApaI, and TaqI VDR polymorphisms are not associated with BMD or with fractures, but the Cdx2 polymorphism may be associated with risk for vertebral fractures.


Asunto(s)
Densidad Ósea/genética , Proteínas de Homeodominio/genética , Osteoporosis/genética , Polimorfismo Genético , Receptores de Calcitriol/genética , Adulto , Anciano , Factor de Transcripción CDX2 , Desoxirribonucleasas de Localización Especificada Tipo II , Femenino , Fracturas Óseas/genética , Genotipo , Haplotipos , Humanos , Masculino , Persona de Mediana Edad , Regiones Promotoras Genéticas , Estudios Prospectivos
12.
J Clin Endocrinol Metab ; 91(9): 3575-83, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16804049

RESUMEN

CONTEXT: The COLIA1 gene is a strong candidate for susceptibility to osteoporosis. The causal genetic variants are currently unclear, but the most likely are functional polymorphisms in the promoter and intron 1 of COLIA1. OBJECTIVE: The objective of the study was to determine whether promoter and intron 1 polymorphisms of COLIA1 or haplotypes defined by these polymorphisms regulate bone mineral density (BMD) in women. DESIGN: This was a population-based association study involving 3270 women from the United Kingdom who took part in a regional osteoporosis screening program. MAIN OUTCOME MEASURES: BMD at the lumbar spine (LS-BMD) and femoral neck (FN-BMD) was measured on two occasions approximately 6 yr apart, in relation to polymorphisms and haplotypes defined by polymorphisms within the COLIA1 intron 1 (+1245G/T; rs1800012) and promoter (-1997G/T; rs1107946; -1663IndelT; rs2412298). RESULTS: The polymorphisms were in strong linkage disequilibrium, and three haplotypes accounted for more than 95% of alleles at the COLIA1 locus. The individual polymorphisms were associated with BMD, but the most consistent associations were with haplotypes defined by all three polymorphisms. Homozygote carriers of haplotype 2 (-1997G/-1663delT/+1245T) had reduced BMD at baseline (P = 0.007 for LS-BMD; P = 0.008 for FN-BMD), whereas homozygotes for haplotype 3 (-1997T/-1663insT/+1245G) had increased BMD (P = 0.007 for LS-BMD). Similar associations were observed at follow-up for haplotype 3, but the association with haplotype 2 was weaker due to increased uptake of hormone replacement therapy in homozygotes for this haplotype. CONCLUSIONS: Two haplotypes defined by polymorphisms in the 5' flank of the COLIA1 regulate BMD in a bidirectional manner in women.


Asunto(s)
Densidad Ósea/genética , Colágeno Tipo I/genética , Osteoporosis/genética , Absorciometría de Fotón , ADN/genética , Femenino , Genotipo , Haplotipos , Humanos , Intrones , Desequilibrio de Ligamiento , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Polimorfismo Genético , Regiones Promotoras Genéticas , Análisis de Secuencia de ADN , Reino Unido
13.
PLoS Med ; 3(4): e90, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16475872

RESUMEN

BACKGROUND: Osteoporosis and fracture risk are considered to be under genetic control. Extensive work is being performed to identify the exact genetic variants that determine this risk. Previous work has suggested that a G/T polymorphism affecting an Sp1 binding site in the COLIA1 gene is a genetic marker for low bone mineral density (BMD) and osteoporotic fracture, but there have been no very-large-scale studies of COLIA1 alleles in relation to these phenotypes. METHODS AND FINDINGS: Here we evaluated the role of COLIA1 Sp1 alleles as a predictor of BMD and fracture in a multicenter study involving 20,786 individuals from several European countries. At the femoral neck, the average (95% confidence interval [CI]) BMD values were 25 mg/cm2 (CI, 16 to 34 mg/cm2) lower in TT homozygotes than the other genotype groups (p < 0.001), and a similar difference was observed at the lumbar spine; 21 mg/cm2 (CI, 1 to 42 mg/cm2), (p = 0.039). These associations were unaltered after adjustment for potential confounding factors. There was no association with fracture overall (odds ratio [OR] = 1.01 [CI, 0.95 to 1.08]) in either unadjusted or adjusted analyses, but there was a non-significant trend for association with vertebral fracture and a nominally significant association with incident vertebral fractures in females (OR = 1.33 [CI, 1.00 to 1.77]) that was independent of BMD, and unaltered in adjusted analyses. CONCLUSIONS: Allowing for the inevitable heterogeneity between participating teams, this study-which to our knowledge is the largest ever performed in the field of osteoporosis genetics for a single gene-demonstrates that the COLIA1 Sp1 polymorphism is associated with reduced BMD and could predispose to incident vertebral fractures in women, independent of BMD. The associations we observed were modest however, demonstrating the importance of conducting studies that are adequately powered to detect and quantify the effects of common genetic variants on complex diseases.


Asunto(s)
Colágeno Tipo I/genética , Osteoporosis/genética , Fracturas de la Columna Vertebral/genética , Adulto , Anciano , Anciano de 80 o más Años , Densidad Ósea , Estudios de Casos y Controles , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Osteoporosis/tratamiento farmacológico , Polimorfismo Genético , Factores de Riesgo , Fracturas de la Columna Vertebral/etiología
14.
J Bone Miner Res ; 20(11): 1960-7, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16234969

RESUMEN

UNLABELLED: Here we show that a common polymorphism causing a valine to methionine amino acid substitution at codon 418 (V418M) in the CLCN7 gene is associated with femoral neck BMD in women. Our study adds to accumulating evidence that shows that common allelic variants in monogenic bone disease genes often contribute to BMD regulation in normal subjects. INTRODUCTION: The CLCN7 gene is a strong candidate for regulation of BMD, because mutations in CLCN7 cause some forms of osteopetrosis, a disease characterized by impaired osteoclast function and increased BMD. In this study, we sought to determine whether common allelic variation within CLCN7 was associated with BMD in the normal population. MATERIALS AND METHODS: We conducted mutation screening of the exons and intron-exon boundaries in CLCN7 by DNA sequencing in 50 normal subjects. We conducted an association study between common polymorphisms in CLCN7 and haplotypes defined by these polymorphisms and BMD values at the lumbar spine and femoral neck in a population-based cohort study of 1077 Scottish women 45-55 years of age. RESULTS: We identified 24 polymorphisms, but most were rare and only 4 had allele frequencies of >5%. These were a conservative single nucleotide polymorphism (SNP) in exon 1 (rs3751884), a 50-bp tandem repeat polymorphism within intron 8, and two SNPs within exon 15 (rs12926089 and rs12926669), of which one (rs12926669) predicts an amino acid change from valine to methionine at codon 418 (V418M). The exon 15 SNPs were in strong linkage disequilibrium and were both associated with femoral neck BMD (p = 0.001-0.003). None of the other polymorphisms were associated with BMD, and long-range haplotypes showed a much weaker association with BMD than the exon 15 SNPs. The V418M polymorphism was an independent predictor of femoral neck BMD on multiple regression analysis accounting for 1% of the variance in BMD at this site. CONCLUSIONS: Our study indicates that the V418M polymorphism of CLCN7 contributes to the genetic regulation of femoral neck BMD in women and adds to accumulating evidence that indicates that subtle polymorphic variation in genes that cause monogenic bone diseases also contribute to regulation of BMD in normal subjects.


Asunto(s)
Densidad Ósea/genética , Canales de Cloruro/genética , Polimorfismo de Nucleótido Simple/genética , Adulto , Exones/genética , Femenino , Cuello Femoral/metabolismo , Frecuencia de los Genes , Genotipo , Haplotipos/genética , Humanos , Intrones/genética , Desequilibrio de Ligamiento , Vértebras Lumbares/metabolismo , Persona de Mediana Edad , Repeticiones de Minisatélite/genética , Polimorfismo Genético/genética
15.
Hum Mol Genet ; 14(21): 3141-8, 2005 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-16183656

RESUMEN

Bone mineral density (BMD) is a complex trait with a strong genetic component and an important predictor of osteoporotic fracture risk. Here we report the use of a cross-species strategy to identify genes that regulate BMD, proceeding from quantitative trait mapping in mice to association mapping of the syntenic region in the human genome. We identified a quantitative trait locus (QTL) on the mouse X-chromosome for post-maturity change in spine BMD in a cross of SAMP6 and AKR/J mice and conducted association mapping of the syntenic region on human chromosome Xp22. We studied 76 single nucleotide polymorphisms (SNP) from the human region in two sets of DNA pools prepared from individuals with lumbar spine-BMD (LS-BMD) values falling into the top and bottom 13th percentiles of a population-based study of 3100 post-menopausal women. This procedure identified a region of significant association for two adjacent SNP (rs234494 and rs234495) within the Xp22 locus (P<0.001). Individual genotyping for rs234494 in the BMD pools confirmed the presence of an association for alleles (P=0.018) and genotypes (P=0.008). Analysis of rs234494 and rs234495 in 1053 women derived from the same population who were not selected for BMD values showed an association with LS-BMD for rs234495 (P=0.01) and for haplotypes defined by both SNP (P=0.002). Our study illustrates that interspecies synteny can be used to identify and refine QTL for complex traits and represents the first example where a human QTL for BMD regulation has been mapped using this approach.


Asunto(s)
Densidad Ósea/genética , Mapeo Cromosómico , Cromosomas Humanos X/genética , Sitios de Carácter Cuantitativo , Sintenía/genética , Absorciometría de Fotón , Animales , Cruzamientos Genéticos , Femenino , Fémur/química , Haplotipos/genética , Humanos , Modelos Lineales , Vértebras Lumbares/química , Ratones , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Especificidad de la Especie
16.
JAMA ; 292(17): 2105-14, 2004 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-15523071

RESUMEN

CONTEXT: Both bone mineral density (BMD) and fracture risk have a strong genetic component. Estrogen receptor alpha (ESR1) is a candidate gene for osteoporosis, but previous studies of ESR1 polymorphisms in this field were hampered by small sample size, lack of standardization, and inconclusive results. OBJECTIVE: To generate large-scale evidence on whether 3 common ESR1 polymorphisms (intron 1 polymorphisms XbaI [dbSNP: rs9340799] and PvuII [dbSNP: rs2234693] and promoter TA repeats microsatellite) and haplotypes thereof are associated with BMD and fractures. DESIGN AND SETTING: Meta-analysis of individual-level data involving standardized genotyping of 18 917 individuals in 8 European centers. MAIN OUTCOME MEASURES: BMD of femoral neck and lumbar spine; all fractures and vertebral fractures by genotype. RESULTS: No between-center heterogeneity was observed for any outcome in any genetic contrast. None of the 3 polymorphisms or haplotypes had any statistically significant effect on BMD in adjusted or unadjusted analyses, and estimated differences between genetic contrasts were 0.01 g/cm2 or less. Conversely, we found significant reductions in fracture risk. In women homozygous for the absence of an XbaI recognition site, the adjusted odds of all fractures were reduced by 19% (odds ratio, 0.81 [95% CI, 0.71-0.93]; P = .002) and vertebral fractures by 35% (odds ratio, 0.65 [95% CI, 0.49-0.87]; P = .003). Effects on fractures were independent of BMD and unaltered in adjusted analyses. No significant effects on fracture risk were seen for PvuII and TA repeats. CONCLUSIONS: ESR1 is a susceptibility gene for fractures, and XbaI determines fracture risk by mechanisms independent of BMD. Our study demonstrates the value of adequately powered studies with standardized genotyping and clinical outcomes in defining effects of common genetic variants on complex diseases.


Asunto(s)
Densidad Ósea/genética , Fracturas Óseas/genética , Osteoporosis/genética , Receptores de Estrógenos/genética , Anciano , Receptor alfa de Estrógeno , Femenino , Cuello Femoral , Fracturas Óseas/epidemiología , Predisposición Genética a la Enfermedad , Genotipo , Haplotipos , Humanos , Vértebras Lumbares , Masculino , Metaanálisis como Asunto , Repeticiones de Microsatélite , Persona de Mediana Edad , Osteoporosis/fisiopatología , Polimorfismo Genético , Riesgo
17.
J Bone Miner Res ; 19(9): 1506-11, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15312251

RESUMEN

UNLABELLED: To clarify the role of the TNFRSF11B gene encoding osteoprotegerin (OPG), in Paget's disease of bone (PDB) we studied TNFRSF11B polymorphisms in an association study of 690 UK subjects and in a worldwide familial study of 66 kindreds. We found that the G1181 allele of TNFRSF11B, encoding lysine at codon 3 of the OPG protein, predisposes to both sporadic and familial PDB. INTRODUCTION: Paget's disease of bone (PDB) is a common disorder characterized by focal abnormalities of bone turnover. Genetic factors are important in the pathogenesis of PDB, and studies have shown that inactivating mutations of the TNFRSF11B gene, encoding osteoprotegerin (OPG), cause the rare syndrome of juvenile Paget's disease. In this study, we sought to determine whether polymorphisms of the TNFRSF11B gene contribute to the pathogenesis of classical PDB. MATERIALS AND METHODS: We screened for polymorphisms of the TNFRSF11B gene by DNA sequencing of the proximal promoter, coding exons, and intron-exon boundaries in 20 PDB patients and 10 controls. Informative single nucleotide polymorphisms (SNPs), including a G1181C SNP, which predicts a lysine-asparagine substitution at codon 3 of the OPG signal peptide and haplotypes, were related to the presence of PDB in 312 cases compared with 378 controls and to transmission of PDB in 140 affected offspring from 66 kindreds with familial PDB. RESULTS AND CONCLUSIONS: The G1181 allele was significantly over-represented in PDB patients (chi(2) = 5.7, df = 1, p = 0.017, adjusted alpha = 0.024), equivalent to an odds ratio for PDB of 1.55 (95% CI: 1.11-2.16). The distribution of TNFRSF11B haplotypes significantly differed in sporadic PDB cases and controls (chi(2) = 30.2, df = 9, p < 0.001) because of over-representation of haplotypes containing the G1181 allele in cases. The family study showed that the most common haplotype containing the G1181 allele was transmitted more frequently than expected to 140 individuals with familial PDB (chi(2) = 7.35, df = 1, p < 0.01), and the transmission disequilibrium was even more pronounced in a subgroup of 78 familial PDB patients who did not carry mutations of the SQSTM1 gene (chi(2) = 8.44, df = 1, p < 0.005). We conclude that the G1181 allele of TNFRSF11B, encoding lysine at codon 3 of the OPG protein, predisposes to the development of sporadic PDB and familial PDB that is not caused by SQSTM1 mutations.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Osteítis Deformante/genética , Polimorfismo de Nucleótido Simple/genética , Receptores del Factor de Necrosis Tumoral/genética , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Análisis Mutacional de ADN , Femenino , Humanos , Masculino , Osteoprotegerina , Receptores del Factor de Necrosis Tumoral/metabolismo
18.
Hum Mol Genet ; 11(19): 2289-95, 2002 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-12217957

RESUMEN

Osteoporosis is a multifactorial disease with a strong genetic component characterized by reduced bone density and increased fracture risk. A candidate locus for regulation of hip bone mineral density (BMD) has been identified on chromosome 1p36 by linkage analysis. One of the positional and functional candidate genes located within this region is the tumour necrosis factor receptor superfamily member 1B (TNFRSF1B). In order to investigate whether allelic variation in TNFRSF1B contributes to regulation of bone mass, we studied several polymorphisms of this gene in a population based cohort study of 1240 perimenopausal women from the UK. We studied a T676G change in exon 6 (196: Met-Arg) and three SNPs (G593A, T598G, and T620C) in the 3'UTR of the gene. The 3'UTR SNPs were in strong linkage disequilibrium (LD) with each other (P<0.00001), and the exon 6 SNP was in LD with G593A and T598G (P<0.00001). We found no association between T676G alleles and BMD at the spine or hip. However, haplotype analysis showed that subjects homozygous for the A593-T598-C620 haplotype (n=85) had femoral neck BMD values 5.7% lower than those who did not carry the haplotype (n=1155; P<0.00008) and this remained significant after correcting for confounding factors and multiple testing (P<0.0009). Regression analysis showed that the ATC haplotype accounted for 1.2% of the population variance in hip BMD and was the second strongest predictor after body weight. In summary, our work supports the view that allelic variation in the 3'UTR of TNFRSF1B gene contributes to the genetic regulation of bone mass, with effects that are specific for femoral neck BMD.


Asunto(s)
Densidad Ósea/genética , Desequilibrio de Ligamiento , Receptores del Factor de Necrosis Tumoral/genética , Regiones no Traducidas 3' , Densidad Ósea/fisiología , Femenino , Cuello Femoral/fisiología , Haplotipos , Humanos , Persona de Mediana Edad , Polimorfismo Genético , Receptores del Factor de Necrosis Tumoral/fisiología , Receptores Tipo II del Factor de Necrosis Tumoral
19.
Psychiatr Genet ; 12(3): 133-6, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12218656

RESUMEN

Candidate gene studies are one of the most widely used approaches in the dissection of the genetic basis of disease. High-throughput methods for genotyping single nucleotide polymorphisms (SNPs) are necessary to perform large-scale association studies. We describe the use of the TaqMan or 5' nuclease allelic discrimination assay for genotyping polymorphisms of the collagen I alpha 1 (COLIA1) and vitamin D receptor (VDR) genes. The basis for the assay is an allele specific oligonucleotide probe, labelled with a fluorescent reporter dye and a quencher dye, which is cleaved during the amplification process generating an increase in the intensity of fluorescence related to the accumulation of PCR product which is measured directly in the reaction well. Suitable for the discrimination of alleles differing by a single base change, this technique is robust, accurate, cost effective, and sufficiently high-throughput for a medium sized laboratory performing association analyses.


Asunto(s)
Alelos , Técnicas Genéticas , Polimorfismo de Nucleótido Simple/genética , Secuencia de Bases , Cartilla de ADN , Humanos , Reacción en Cadena de la Polimerasa/métodos , Programas Informáticos
20.
J Bone Miner Res ; 17(7): 1273-9, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12096841

RESUMEN

Peak bone mass is an important risk factor for the development of osteoporosis in later life. Previous work has suggested that genetic, intrauterine, and environmental factors all contribute to the regulation of bone mass, but the ways in which they interact with each other to do so remain poorly understood. In this study, we investigated the relationship between peak bone mass and polymorphisms of the vitamin D receptor (VDR), estrogen receptor (ER) a, and collagen type Ialpha1 (COLIA1) genes in relation to other factors such as birth weight, lifestyle diet, and exercise in a population-based cohort of 216 women and 244 men in their early 20s. Stepwise multiple regression analysis showed that body weight was the strongest predictor of bone mineral density (BMD) in women, accounting for 16.4% of the variance in spine BMD and 8.4% of the variance in femoral neck BMD. Other significant predictors were VDR genotype (3.8%) and carbohydrate intake (1.6%) at the spine and vitamin D intake (3.4%) and ER genotype (3.4%) at the femoral neck. Physical activity was the strongest predictor of BMD in men, accounting for 6.7% of the variance at the spine and 5.1% at the hip. Other significant predictors were body weight (5%) and ER PvuII genotype (2.8%) at the spine and weight (3.4%) and alcohol intake (2%) at the femoral neck. Birth weight was not a significant predictor of BMD at either site but COLIA1 genotype significantly predicted birth weight in women, accounting for 4.3% of the variance. We conclude that peak bone mass is regulated by an overlapping but distinct set of environmental and genetic influences that differ in men and women. However, much of the variance in BMD was unexplained by the variables studied here, which suggests that either most of the genes that regulate BMD remain to be discovered or major environmental influences on BMD exist that have not yet been identified.


Asunto(s)
Colágeno Tipo I/genética , Osteoporosis/genética , Receptores de Calcitriol/genética , Receptores de Estrógenos/genética , Adulto , Densidad Ósea , Ambiente , Receptor alfa de Estrógeno , Femenino , Humanos , Irlanda , Estudios Longitudinales , Masculino , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...