Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 101
1.
ISME Commun ; 4(1): ycad002, 2024 Jan.
Article En | MEDLINE | ID: mdl-38304082

Dry permafrost is a challenging environment for microbial life due to cold, dry, and often oligotrophic conditions. In 2016, Elephant Head, Antarctica, was confirmed as the second site on Earth to contain dry permafrost. It is geographically distinct from the McMurdo Dry Valleys where dry permafrost has been studied previously. Here, we present the first study of the microbial activity, diversity, and functional potential of Elephant Head dry permafrost. Microbial activity was measured using radiorespiration assays with radiolabeled acetate as a carbon source at 5, 0, and -5°C. Low, but detectable, rates of microbial activity were measured in some samples at 0 and -5°C. This is distinct from previous studies of McMurdo Dry Valley dry permafrost which concluded that dry permafrost represents a cold-arid limit to life on the planet. The isolation of cold-adapted organisms from these soils, including one capable of subzero growth, further supports that the Elephant Head dry active layer and dry permafrost harbor viable microbial life, which may be active in situ. Metagenomic, 16S rRNA gene, and internal transcribed spacer and amplicon sequencing identified similar microbial communities to other Antarctic and cold environments. The Elephant Head microbial community appears to be adapted for survival in cold, dry, and oligotrophic conditions based on the presence of cold adaptation and stress response genes in the metagenomes. Together, our results show that dry permafrost environments do not exclude active microbial life at subzero temperatures, suggesting that the cold, dry soils of Mars may also not be as inhospitable as previously thought.

2.
Astrobiology ; 23(12): 1303-1336, 2023 12.
Article En | MEDLINE | ID: mdl-38133823

In 2019, the Atacama Rover Astrobiology Drilling Studies (ARADS) project field-tested an autonomous rover-mounted robotic drill prototype for a 6-Sol life detection mission to Mars (Icebreaker). ARADS drilled Mars-like materials in the Atacama Desert (Chile), one of the most life-diminished regions on Earth, where mitigating contamination transfer into life-detection instruments becomes critical. Our Contamination Control Strategy and Implementation (CCSI) for the Sample Handling and Transfer System (SHTS) hardware (drill, scoop and funnels) included out-of-simulation protocol testing (out-of-sim) for hardware decontamination and verification during the 6-Sol simulation (in-sim). The most effective five-step decontamination combined safer-to-use sterilants (3%_hydrogen-peroxide-activated 5%_sodium-hypochlorite), and in situ real-time verification by adenosine triphosphate (ATP) and Signs of Life Detector (SOLID) Fluorescence Immunoassay for characterization hardware bioburden and airborne contaminants. The 20- to 40-min protocol enabled a 4-log bioburden reduction down to <0.1 fmoles ATP detection limit (funnels and drill) to 0.2-0.7 fmoles (scoop) of total ATP. The (post-cleaning) hardware background was 0.3 to 1-2 attomoles ATP/cm2 (cleanliness benchmark background values) equivalent to ca. 1-10 colony forming unit (CFU)/cm2. Further, 60-100% of the in-sim hardware background was ≤3-4 bacterial cells/cm2, the threshold limit for Class <7 aseptic operations. Across the six Sols, the flux of airborne contaminants to the drill sites was ∼5 and ∼22 amoles ATP/(cm2·day), accounting for an unexpectedly high Fluorescence Intensity (FI) signal (FI: ∼6000) against aquatic cyanobacteria, but negligible anthropogenic contribution. The SOLID immunoassay also detected microorganisms from multiple habitats across the Atacama Desert (anoxic, alkaline/acidic microenvironments in halite fields, playas, and alluvial fans) in both airborne and post-cleaning hardware background. Finally, the hardware ATP background was 40-250 times lower than the ATP in cores. Similarly, the FI peaks (FImax) against the microbial taxa and molecular biomarkers detected in the post-cleaned hardware (FI: ∼1500-1600) were 5-10 times lower than biomarkers in drilled sediments, excluding significant interference with putative biomarker found in cores. Similar protocols enable the acquisition of contamination-free materials for ultra-sensitive instruments analysis and the integrity of scientific results. Their application can augment our scientific knowledge of the distribution of cryptic life on Mars-like grounds and support life-detection robotic and human-operated missions to Mars.


Cyanobacteria , Mars , Robotics , Humans , Exobiology/methods , Adenosine Triphosphate , Biomarkers/analysis , Extraterrestrial Environment
3.
Planta ; 258(1): 8, 2023 May 25.
Article En | MEDLINE | ID: mdl-37227529

MAIN CONCLUSION: Microclimate determines lichens and cyanobacteria distribution in the Negev, with lichens and cyanobacteria inhabit dewy and dewless habitats, respectively. Lichens experiences more frequent and extensive environmental fluctuations than cyanobacteria. The spatial partitioning of chlorolichens (eukaryotes) and cyanobacteria (prokaryotes) are intriguing, especially following recent intense search for extraterrestrial life. This is especially relevant for deserts, where both lithobionts are thought to use rain and dew but may differ in their resilience to environmental extremes and fluctuations. Following the different spatial distribution of lithobionts in a south-facing slope of the Negev Highlands (with cyanobacteria-inhabiting rocks and chlorolichen-inhabiting cobbles), measurements of temperature, non-rainfall water (NRW) and biomass were carried out within the drainage basin aiming to test the hypotheses that (i) cobble-inhabiting lichens may access more water (through NRW) and may be subjected to more extensive environmental fluctuations of temperature and water than bedrock-inhabiting cyanobacteria, and (ii) will therefore have a greater contribution to the ecosystem productivity. In contrast to cyanobacteria, cobble-inhabiting chlorolichens were found to access NRW (up to 0.20 mm of daily amounts in comparison to < 0.04 mm of the cyanobacteria) and to experience higher fluctuations of temperatures (up to 4.1 °C higher and 5.3 °C lower). With lichens and cyanobacteria inhabiting dewy and dewless habitats, respectively, NRW was found responsible for contributing 6.8-fold higher organic carbon to the lithobiontic community. At this site, chlorolichens experience more extensive environmental fluctuations than cyanobacteria, possibly indicating a higher tolerance for environmental fluctuations. These observations may assist in the interpretation of the abiotic conditions responsible for past or present lithobiontic life on Mars.


Cyanobacteria , Lichens , Water , Ecosystem , Biomass
4.
PLoS One ; 18(4): e0282877, 2023.
Article En | MEDLINE | ID: mdl-37011053

We investigate the water sources for a perennial spring, "Little Black Pond," located at Expedition Fiord, Axel Heiberg Island in the Canadian High Arctic based on dissolved gases. We measured the dissolved O2 in the likely sources Phantom Lake and Astro Lake and the composition of noble gases (3He/4He, 4He, Ne,36Ar, 40Ar, Kr, Xe), N2, O2, CO2, H2S, CH4, and tritium dissolved in the outflow water and bubbles emanating from the spring. The spring is associated with gypsum-anhydrite piercement structures and occurs in a region of thick, continuous permafrost (400-600 m). The water columns in Phantom and Astro lakes are uniform and saturated with O2. The high salinity of the water emanating from the spring, about twice sea water, affects the gas solubility. Oxygen in the water and bubbles is below the detection limit. The N2/Ar ratio in the bubbles and the salty water is 89.9 and 40, respectively, and the relative ratios of the noble gases, with the exception of Neon, are consistent with air dissolved in lake water mixed with air trapped in glacier bubbles as the source of the gases. The Ne/Ar ratio is ~62% of the air value. Our results indicate that about half (0.47±0.1) of the spring water derives from the lakes and the other half from subglacial melt. The tritium and helium results indicate that the groundwater residence time is over 70 years and could be thousands of years.


Noble Gases , Water , Tritium , Canada , Helium , Oxygen/analysis , Lakes
5.
Sci Total Environ ; 871: 162137, 2023 May 01.
Article En | MEDLINE | ID: mdl-36775167

The dispersion of microorganisms through the atmosphere is a continual and essential process that underpins biogeography and ecosystem development and function. Despite the ubiquity of atmospheric microorganisms globally, specific knowledge of the determinants of atmospheric microbial diversity at any given location remains unresolved. Here we describe bacterial diversity in the atmospheric boundary layer and underlying soil at twelve globally distributed locations encompassing all major biomes, and characterise the contribution of local and distant soils to the observed atmospheric community. Across biomes the diversity of bacteria in the atmosphere was negatively correlated with mean annual precipitation but positively correlated to mean annual temperature. We identified distinct non-randomly assembled atmosphere and soil communities from each location, and some broad trends persisted across biomes including the enrichment of desiccation and UV tolerant taxa in the atmospheric community. Source tracking revealed that local soils were more influential than distant soil sources in determining observed diversity in the atmosphere, with more emissive semi-arid and arid biomes contributing most to signatures from distant soil. Our findings highlight complexities in the atmospheric microbiota that are relevant to understanding regional and global ecosystem connectivity.


Ecosystem , Microbiota , Soil , Bacteria , Atmosphere , Temperature , Soil Microbiology
6.
Astrobiology ; 22(12): 1443-1451, 2022 Dec.
Article En | MEDLINE | ID: mdl-36475964

It may be that habitable planets are common but life is rare. If future advances in telescopes increasingly suggest this is so, humankind might feel motivated to seed lifeless planets with resilient terrestrial organisms or synthetic forms designed to thrive on the target planet. A useful mechanism for achieving this goal at a relatively low cost is to use interstellar comets transiting the Solar System to convey microbial cargoes toward nearby planetary systems, where they could disseminate the inoculum via their dust trails. Conversely, it is conceivable that terrestrial life was deliberately seeded in this matter, a hypothesis that could be tested if we found evidence for life on other Solar System bodies that displayed common basic biochemical signatures. Our scenario raises a number of ethical and technological challenges that need to be addressed.

7.
Astrobiology ; 22(8): 992-1008, 2022 08.
Article En | MEDLINE | ID: mdl-35731031

Life detection on Mars is an important topic that includes a direct search for biomarkers. This requires instruments for in situ biomarker detection that are compact, lightweight, and able to withstand operations in space. Solid-state nanopores are excellent candidates that allow fast single-molecule detection. They can withstand high temperatures and be sterilized to minimize planetary contamination. The instruments are portable with low-power requirements. We demonstrate a few key results in advancing the use of nanopores for in-space applications. First, we developed modified deoxyribonucleic acid (DNA) extraction protocols to extract DNA from Mars analog soils. Second, we used silicon nitride nanopores to demonstrate the detection of extracted DNA and corresponding current characteristics. The yields and properties of extracted DNA (e.g., estimated diameters) varied somewhat by soil types, extraction methods, and nanopores used. The yields varied from a minimum of 0.9 ng DNA/g soil for a magnesium carbonate sample from Lake Salda to a maximum of 210 ng DNA/g soil for a calcium carbonate sample from Trona Pinnacles. For a given soil type, yields from different methods varied by a factor of up to 50. These observations motivate future studies with a broader range of Mars-like soils and improved instruments to increase signal-to-noise-ratio at higher measurement bandwidths.


Mars , Nanopores , DNA , Soil
8.
Sci Rep ; 12(1): 10164, 2022 06 17.
Article En | MEDLINE | ID: mdl-35715549

The "Search for life", which may be extinct or extant on other planetary bodies is one of the major goals of NASA planetary exploration missions. Finding such evidence of biological residue in a vast planetary landscape is an enormous challenge. We have developed a highly sensitive instrument, the "Compact Color Biofinder", which can locate minute amounts of biological material in a large area at video speed from a standoff distance. Here we demonstrate the efficacy of the Biofinder to detect fossils that still possess strong bio-fluorescence signals from a collection of samples. Fluorescence images taken by the Biofinder instrument show that all Knightia spp. fish fossils analysed from the Green River formation (Eocene, 56.0-33.9 Mya) still contain considerable amounts of biological residues. The biofluorescence images support the fact that organic matter has been well preserved in the Green River formation, and thus, not diagenetically replaced (replaced by minerals) over such a significant timescale. We further corroborated results from the Biofinder fluorescence imagery through Raman and attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopies, scanning electron microscopy, energy dispersive X-ray spectroscopy (SEM-EDS), and fluorescence lifetime imaging microscopy (FLIM). Our findings confirm once more that biological residues can survive millions of years, and that using biofluorescence imaging effectively detects these trace residues in real time. We anticipate that fluorescence imaging will be critical in future NASA missions to detect organics and the existence of life on other planetary bodies.


Fossils , Planets , Animals , Minerals/analysis , Spectrometry, X-Ray Emission , Spectroscopy, Fourier Transform Infrared
9.
Astrobiology ; 22(2): 225-232, 2022 02.
Article En | MEDLINE | ID: mdl-35025628

The emerging understanding of microbial trace gas chemotrophy as a metabolic strategy to support energy and carbon acquisition for microbial survival and growth has significant implications in the search for past, and even extant, life beyond Earth. The use of trace gases, including hydrogen and carbon monoxide as substrates for microbial oxidation, potentially offers a viable strategy with which to support life on planetary bodies that possess a suitable atmospheric composition, such as Mars and Titan. Here, we discuss the current state of knowledge of this process and explore its potential in the field of astrobiological exploration.


Exobiology , Mars , Carbon Monoxide , Earth, Planet , Extraterrestrial Environment , Hydrogen , Planets
10.
Appl Spectrosc ; 75(11): 1427-1436, 2021 Nov.
Article En | MEDLINE | ID: mdl-34309445

We have developed a compact instrument called the "COmpact COlor BIofinder", or CoCoBi, for the standoff detection of biological materials and organics with polyaromatic hydrocarbons (PAHs) using a nondestructive approach in a wide area. The CoCoBi system uses a compact solid state, conductively cooled neodymium-doped yttrium aluminum garnet (Nd:YAG) nanosecond pulsed laser capable of simultaneously providing two excitation wavelengths, 355 and 532 nm, and a compact, sensitive-gated color complementary metal-oxide-semiconductor camera detector. The system is compact, portable, and determines the location of biological materials and organics with PAHs in an area 1590 cm2 wide, from a target distance of 3 m through live video using fast fluorescence signals. The CoCoBi system is highly sensitive and capable of detecting a PAH concentration below 1 part per billion from a distance of 1 m. The color images provide the simultaneous detection of various objects in the target area using shades of color and morphological features. We demonstrate that this unique feature successfully detected the biological remains present in a 150-million-year-old fossil buried in a fluorescent clay matrix. The CoCoBi was also successfully field-tested in Hawaiian ocean water during daylight hours for the detection of natural biological materials present in the ocean. The wide-area and video-speed imaging capabilities of CoCoBi for biodetection may be highly useful in future NASA rover-lander life detection missions.


Lasers, Solid-State , Fluorescence , Fossils , Hydrocarbons
11.
Astrobiology ; 21(5): 505-510, 2021 05.
Article En | MEDLINE | ID: mdl-33885325

Preferential uptake of either levorotatory (L) or dextrorotatory (D) enantiomer of a chiral molecule is a potential planetary life-detection method. On Earth, bacteria, as a rule, metabolize D-sugars and L-amino acids. Here, we use growth experiments to identify exceptions to the rule and their potential impact on the method's reliability. Our experiments involve six strains of Bacillus and collective uptake of the sugars glucose and arabinose, and the amino acids alanine, glutamic acid, leucine, cysteine, and serine-all of which are highly soluble. We find that selective uptake is not evident unless (1) each sugar is tested individually and (2) multiple amino acids are tested together in a mixture. Combining sugars should be avoided because, as we show in Bacillus bacteria, the same organisms may catabolize one sugar, glucose, in D-form and another sugar, arabinose, in L-form. Single amino acids should be avoided because bacteria can access certain proteinogenically incompatible enantiomers using specific racemases. Specifically, bacteria contain an alanine acid racemase and can catabolize D-alanine if no other D-amino acids are present. The proposed improvements would reliably separate nonselective chemical reactions from biological reactions and, if life is indicated, inform whether the selective patterns for amino acids and sugars are the same as on Earth.


Alanine , Amino Acids , Carbohydrates , Reproducibility of Results , Stereoisomerism
12.
Life Sci Space Res (Amst) ; 28: 57-65, 2021 Feb.
Article En | MEDLINE | ID: mdl-33612180

Synthetic biology has potential spaceflight applications yet few if any studies have attempted to translate Earth-based synthetic biology tools into spaceflight. An exogenously inducible biological circuit for protein production in Arabidopsis thaliana, pX7-AtPDSi (Guo et al. 2003), was flown to ISS and functionally investigated. Seedlings were grown in a custom built 1.25 U plant greenhouse. Images recorded during the experiment show that leaves of pX7-AtPDSi seedlings photobleached as designed while wild type Col-0 leaves did not, which reveals that the synthetic circuit led to protein production during spaceflight. Polymerase chain reaction analysis post-flight also confirms that the Cre/LoxP (recombination system) portions of the circuit were functional in spaceflight. The subcomponents of the biological circuit, estrogen-responsive transcription factor XVE, Cre/LoxP DNA recombination system, and RNAi post-transcriptional gene silencing system now have flight heritage and can be incorporated in future designs for space applications. To facilitate future plant studies in space, the full payload design and manufacturing files are made available.


Arabidopsis/metabolism , Space Flight , Synthetic Biology/methods , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Estradiol , Integrases , Plant Leaves/genetics , Plant Leaves/radiation effects , Plants, Genetically Modified , RNA Interference , RNA, Plant , Receptors, Estrogen/genetics , Transcription Factors
13.
Astrobiology ; 21(4): 381-393, 2021 04.
Article En | MEDLINE | ID: mdl-33351679

The martian surface has been continuously exposed to galactic cosmic radiation. Since organic compounds are degraded by ionizing radiation, knowledge of their decay constants is fundamental to predicting their stability on the martian surface. In this study, we report the radiolysis constant for the destruction of soil organic compounds at a starting concentration of ∼2011 µg C/gsoil from the Mojave Desert. The soils were exposed to gamma irradiation with absorbed doses of up to 19 MGy at room temperature, representing ∼250 million years of exposure to galactic cosmic rays. The destruction of total soil organic carbon and the formation of gases were investigated by a sequential on-line analytical array coupled to gas chromatography-mass spectrometry. Soil inorganic and organic carbon were degraded exponentially with a radiolysis constant 0.3 MGy-1(30%) producing mostly carbon dioxide (93.2%), carbon monoxide (6.2%), and methane (0.6%). Using the dose rate measured by the Radiation Assessment Detector on board the Curiosity rover, we make predictions on the survival of organic compounds in the cold martian subsurface. It is estimated that soil organic compounds with initial concentrations as those found today at the Mojave Desert would have been destroyed to levels <1 ppb at 0.1 m in depth in ∼2000 Myr. Pristine organic compounds are expected to be present at a depth of ∼1.5 m. These results are relevant for the search of organic compounds in past, present, and future missions to Mars. In particular, we predict that the upcoming ExoMars will encounter pristine organic compounds at this depth.


Cosmic Radiation , Mars , Carbon , Extraterrestrial Environment , Gamma Rays , Methane , Soil
14.
Astrobiology ; 20(2): 163-166, 2020 02.
Article En | MEDLINE | ID: mdl-32022602

There has been considerable attention on how to detect life on other worlds by searching for biomolecules. However, there has been much less clarity as to when it becomes warranted to focus a mission on the search for life on another world. At a minimum, a life-detection mission should follow convincing evidence of (1) Liquid water of suitable salinity, past or present; (2) Carbon in the water; (3) Biologically available N in the water; (4) Biologically useful energy in the water; (5) Organic material that can possibly be of biological origin and a plausible strategy for sampling this material. Based on these prerequisites, the most promising targets for a life search are currently the plume of Enceladus and the subsurface of Mars-in equatorial lake bed sediments and in polar ice-cemented ground. Neither the surface of Europa nor the clouds of Venus meet the criteria listed here but may with further exploration.


Evolution, Chemical , Exobiology/methods , Mars , Origin of Life , Saturn , Ice/analysis , Nitrogen/analysis , Space Flight , Water/analysis , Water/chemistry
15.
Life (Basel) ; 9(3)2019 Aug 27.
Article En | MEDLINE | ID: mdl-31461989

We describe the design of an instrument, the OxR (for Oxygen Release), for the enzymatically specific and non-enzymatic detection and quantification of the reactive oxidant species (ROS), superoxide radicals (O2•-), and peroxides (O22-, e.g., H2O2) on the surface of Mars and Moon. The OxR instrument is designed to characterize planetary habitability, evaluate human health hazards, and identify sites with high biosignature preservation potential. The instrument can also be used for missions to the icy satellites of Saturn's Titan and Enceladus, and Jupiter's Europa. The principle of the OxR instrument is based on the conversion of (i) O2•- to O2 via its enzymatic dismutation (which also releases H2O2), and of (ii) H2O2 (free or released by the hydrolysis of peroxides and by the dismutation of O2•-) to O2 via enzymatic decomposition. At stages i and ii, released O2 is quantitatively detected by an O2 sensor and stoichiometrically converted to moles of O2•- and H2O2. A non-enzymatic alternative approach is also designed. These methods serve as the design basis for the construction of a new small-footprint instrument for specific oxidant detection. The minimum detection limit of the OxR instrument for O2•- and O22- in Mars, Lunar, and Titan regolith, and in Europa and Enceladus ice is projected to be 10 ppb. The methodology of the OxR instrument can be rapidly advanced to flight readiness by leveraging the Phoenix Wet Chemical Laboratory, or microfluidic sample processing technologies.

16.
Astrobiology ; 19(6): 757-770, 2019 06.
Article En | MEDLINE | ID: mdl-30958705

Water tracks in the Antarctic Dry Valleys are dark linear features of increased soil moisture that flow downslope over the spring and summer, providing a source of moisture in a cold-arid desert. They are typically sourced from melting snow, ground ice, and deliquescence (Levy et al., 2011 ). This research presents the first in-depth study of the activity potential and diversity of microbial communities of Antarctic water tracks. We investigated whether these water track soils are more habitable to microbial communities by ascertaining the differences in diversity, total and culturable cell counts, and microbial respiratory activity in water track soils compared with the adjacent dry soils in Pearse Valley. Total cell counts ranged from 1.47 × 103 to 4.17 × 105 cells/g dry weight soil. Water track soils had higher total and culturable biomass, in addition to higher microbial activity at 5° and -5°C, compared with adjacent dry soils. Microbial respiration was positively correlated with soil moisture content, but total cell counts and plate counts were not. Surprisingly, microbial community composition did not differ between wet and dry soil communities, and was not related to soil moisture content. The microbial community composition instead appeared to differ spatially based on location and depth. Overall, the data suggest that cold water tracks are more habitable than the surrounding cold-arid soils. Our results suggest that recurring slope lineae, which are dark linear features that grow downslope on Mars over the spring and summer, where liquid water might be a recurring phenomenon, could be sites of astrobiological potential.


Bacteria/isolation & purification , Biomass , Mars , Soil Microbiology , Water , Antarctic Regions , Bacteria/genetics , Cold Temperature , Colony Count, Microbial , DNA, Bacterial/isolation & purification , RNA, Ribosomal, 16S/genetics , Seasons
17.
Life Sci Space Res (Amst) ; 20: 20-29, 2019 Feb.
Article En | MEDLINE | ID: mdl-30797431

Titan is the largest moon of Saturn and possesses a dense atmosphere composed of nitrogen and methane. Various types of organic compounds (hydrocarbons, nitriles, etc.) have been found on Titan, which were generated by reactions taking place in its atmosphere. These reactions are considered to provide crucial evidence for chemical reactions which may have occurred in the atmosphere of primitive Earth. Cassini discovered several lakes of liquid methane and ethane on Titan's surface; in addition, the presence of ammonia water in its sub-surface was implied. In order to simulate the chemical reactions in Titan's atmosphere, gas mixtures of nitrogen and methane have been exposed to plasma discharges to synthesize complex organic matters. In this study, we focused on the formation of nucleic acid bases and related compounds recovered from synthesized Titan tholins. The five nucleic acid bases that terrestrial life uses (adenine, cytosine, thymine, guanine, and uracil) have already been reported to be present in synthesized Titan tholins. Purines and pyrimidines, including the five aforementioned nucleic acid bases, were extracted from synthesized Titan tholins and analyzed by HPLC and LC/MS. As a result, the pyrimidine bases of isocytosine and 2, 4-diaminopyrimidine were detected together with the terrestrial nucleic acid bases of adenine, uracil, and cytosine. The results obtained in conjunction with those from previous studies show that some nucleic acid bases and related pyrimidine bases are found in synthesized Titan tholins, suggesting that chemical evolutions toward xenogenetic systems could occur in Titan's environment.


Atmosphere , Nucleic Acids/analysis , Nucleic Acids/chemistry , Organic Chemicals/analysis , Purines/analysis , Pyrimidines/analysis , Saturn , Extraterrestrial Environment , Meteoroids
18.
Astrobiology ; 18(12): 1497-1516, 2018 12.
Article En | MEDLINE | ID: mdl-30070898

High-energy ionizing radiation in the form of solar energetic particles and galactic cosmic rays is pervasive on the surface of planetary bodies with thin atmospheres or in space facilities for humans, and it may seriously affect the chemistry and the structure of organic and biological material. We used fluorescent microarray immunoassays to assess how different doses of electron and gamma radiations affect the stability of target compounds such as biological polymers and small molecules (haptens) conjugated to large proteins. The radiation effect was monitored by measuring the loss in the immunoidentification of the target due to an impaired ability of the antibodies for binding their corresponding irradiated and damaged epitopes (the part of the target molecule to which antibodies bind). Exposure to electron radiation alone was more damaging at low doses (1 kGy) than exposure to gamma radiation alone, but this effect was reversed at the highest radiation dose (500 kGy). Differences in the dose-effect immunoidentification patterns suggested that the amount (dose) and not the type of radiation was the main factor for the cumulative damage on the majority of the assayed molecules. Molecules irradiated with both types of radiation showed a response similar to that of the individual treatments at increasing radiation doses, although the pattern obtained with electrons only was the most similar. The calculated radiolysis constant did not show a unique pattern; it rather suggested a different behavior perhaps associated with the unique structure of each molecule. Although not strictly comparable with extraterrestrial conditions because the irradiations were performed under air and at room temperature, our results may contribute to understanding the effects of ionizing radiation on complex molecules and the search for biomarkers through bioaffinity-based systems in planetary exploration.


Cosmic Radiation/adverse effects , Electrons/adverse effects , Exobiology/methods , Extraterrestrial Environment/chemistry , Gamma Rays/adverse effects , Biomarkers/analysis , Biopolymers/analysis , Biopolymers/chemistry , Biopolymers/radiation effects , Dose-Response Relationship, Radiation , Haptens/analysis , Haptens/chemistry , Haptens/radiation effects , Immunoassay/methods , Microarray Analysis/methods , Molecular Structure
19.
Science ; 360(6393): 1093-1096, 2018 06 08.
Article En | MEDLINE | ID: mdl-29880682

Variable levels of methane in the martian atmosphere have eluded explanation partly because the measurements are not repeatable in time or location. We report in situ measurements at Gale crater made over a 5-year period by the Tunable Laser Spectrometer on the Curiosity rover. The background levels of methane have a mean value 0.41 ± 0.16 parts per billion by volume (ppbv) (95% confidence interval) and exhibit a strong, repeatable seasonal variation (0.24 to 0.65 ppbv). This variation is greater than that predicted from either ultraviolet degradation of impact-delivered organics on the surface or from the annual surface pressure cycle. The large seasonal variation in the background and occurrences of higher temporary spikes (~7 ppbv) are consistent with small localized sources of methane released from martian surface or subsurface reservoirs.

20.
Proc Natl Acad Sci U S A ; 115(11): 2670-2675, 2018 03 13.
Article En | MEDLINE | ID: mdl-29483268

Traces of life are nearly ubiquitous on Earth. However, a central unresolved question is whether these traces always indicate an active microbial community or whether, in extreme environments, such as hyperarid deserts, they instead reflect just dormant or dead cells. Although microbial biomass and diversity decrease with increasing aridity in the Atacama Desert, we provide multiple lines of evidence for the presence of an at times metabolically active, microbial community in one of the driest places on Earth. We base this observation on four major lines of evidence: (i) a physico-chemical characterization of the soil habitability after an exceptional rain event, (ii) identified biomolecules indicative of potentially active cells [e.g., presence of ATP, phospholipid fatty acids (PLFAs), metabolites, and enzymatic activity], (iii) measurements of in situ replication rates of genomes of uncultivated bacteria reconstructed from selected samples, and (iv) microbial community patterns specific to soil parameters and depths. We infer that the microbial populations have undergone selection and adaptation in response to their specific soil microenvironment and in particular to the degree of aridity. Collectively, our results highlight that even the hyperarid Atacama Desert can provide a habitable environment for microorganisms that allows them to become metabolically active following an episodic increase in moisture and that once it decreases, so does the activity of the microbiota. These results have implications for the prospect of life on other planets such as Mars, which has transitioned from an earlier wetter environment to today's extreme hyperaridity.


Bacteria/isolation & purification , Ecosystem , Soil Microbiology , Bacteria/classification , Bacteria/genetics , Biodiversity , Desert Climate , Soil/chemistry , South America
...