Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microb Cell Fact ; 11: 79, 2012 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-22694848

RESUMEN

BACKGROUND: Microbial engineering strategies that elicit global metabolic perturbations have the capacity to increase organism robustness for targeted metabolite production. In particular, perturbations to regulators of cellular systems that impact glycolysis and amino acid production while simultaneously decreasing fermentation by-products such as acetate and CO(2) make ideal targets. Intriguingly, perturbation of the Carbon Storage Regulator (Csr) system has been previously implicated in large changes in central carbon metabolism in E. coli. Therefore, we hypothesized that perturbation of the Csr system through the CsrA-CsrB ribonucleoprotein complex might increase production of biofuels and their intermediates from heterologous pathways. RESULTS: We engaged the CsrA-CsrB ribonucleoprotein complex of E. coli via overexpression of CsrB. CsrB is a 350-nucleotide non-coding RNA that antagonizes CsrA, an RNA-binding protein that regulates translation of specific mRNA targets. By using shotgun proteomics and targeted metabolomics we established that elevation of CsrB levels leads to alterations in metabolite and protein levels in glycolysis, the TCA cycle and amino acid levels. Consequently, we show that such changes can be suitably applied to improve the production of desired compounds through the native fatty acid and heterologous n-butanol and isoprenoid pathways by up to two-fold. We also observed concomitant decreases in undesirable fermentation by-products such as acetate and CO(2). CONCLUSIONS: We have demonstrated that simple engineering of the RNA-based Csr global regulatory system constitutes a novel approach to obtaining pathway-independent improvements within engineered hosts. Additionally, since Csr is conserved across most prokaryotic species, this approach may also be amenable to a wide variety of production hosts.


Asunto(s)
Biocombustibles/microbiología , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Ingeniería Metabólica , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética , 1-Butanol/metabolismo , Biocombustibles/análisis , Carbono/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo
2.
Annu Rev Biochem ; 79: 563-90, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20367033

RESUMEN

Metabolic engineering for the overproduction of high-value small molecules is dependent upon techniques in directed evolution to improve production titers. The majority of small molecules targeted for overproduction are inconspicuous and cannot be readily obtained by screening. We provide a review on the development of high-throughput colorimetric, fluorescent, and growth-coupled screening techniques, enabling inconspicuous small-molecule detection. We first outline constraints on throughput imposed during the standard directed evolution workflow (library construction, transformation, and screening) and establish a screening and selection ladder on the basis of small-molecule assay throughput and sensitivity. An in-depth analysis of demonstrated screening and selection approaches for small-molecule detection is provided. Particular focus is placed on in vivo biosensor-based detection methods that reduce or eliminate in vitro assay manipulations and increase throughput. We conclude by providing our prospectus for the future, focusing on transcription factor-based detection systems as a natural microbial mode of small-molecule detection.


Asunto(s)
Evolución Molecular Dirigida , Bibliotecas de Moléculas Pequeñas , Colorimetría , Escherichia coli/genética , Escherichia coli/metabolismo , Fluorometría , Redes y Vías Metabólicas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
3.
Genome Biol ; 8(8): R159, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17683528

RESUMEN

BACKGROUND: Neuronal cells respond to changes in intracellular calcium ([Ca2+]i) by affecting both the abundance and architecture of specific mRNAs. Although calcium-induced transcription and transcript variation have both been recognized as important sources of gene regulation, the interplay between these two phenomena has not been evaluated on a genome-wide scale. RESULTS: Here, we show that exon-centric microarrays can be used to resolve the [Ca2+]i-modulated gene expression response into transcript-level and exon-level regulation. Global assessments of affected transcripts reveal modulation within distinct functional gene categories. We find that transcripts containing calcium-modulated exons exhibit enrichment for calcium ion binding, calmodulin binding, plasma membrane associated, and metabolic proteins. Additionally, we uncover instances of regulated exon use in potassium channels, neuroendocrine secretory proteins and metabolic enzymes, and demonstrate that regulated changes in exon expression give rise to distinct transcript variants. CONCLUSION: Our findings connect extracellular stimuli to specific exon behavior, and suggest that changes in transcript and exon abundance are reflective of a coordinated gene expression response to elevated [Ca2+]i. The technology we describe here lends itself readily to the resolution of stimulus-induced gene expression at both the transcript and exon levels.


Asunto(s)
Señalización del Calcio/genética , Calcio/metabolismo , Exones/genética , Perfilación de la Expresión Génica , Neuronas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Empalme Alternativo , Calcio/farmacología , Proteínas de Unión al Calcio/genética , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Regulación de la Expresión Génica , Humanos , Canales Iónicos/genética , Potenciales de la Membrana/efectos de los fármacos , Proteínas del Tejido Nervioso/genética , Neuronas/efectos de los fármacos , Neurosecreción/genética , Cloruro de Potasio/farmacología , Sitios de Empalme de ARN , Transcripción Genética
4.
Cell Res ; 17(7): 581-90, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17621309

RESUMEN

The application of genomic technologies to the study of mRNA processing is increasingly conducted in metazoan organisms in order to understand the complex events that occur during and after transcription. Large-scale systems analyses of mRNA-protein interactions and mRNA dynamics have revealed specificity in mRNA transcription, splicing, transport, translation, and turnover, and have begun to make connections between the different layers of mRNA processing. Here, we review global studies of post-transcriptional processes and discuss the challenges facing our understanding of mRNA regulation in metazoan organisms. In parallel, we examine genome-scale investigations that have expanded our knowledge of RNA-binding proteins and the networks of mRNAs that they regulate.


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , Animales , Genómica/métodos , Modelos Biológicos , Unión Proteica , Biosíntesis de Proteínas , Estabilidad del ARN , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo
6.
BMC Dev Biol ; 5: 14, 2005 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-16033648

RESUMEN

BACKGROUND: In eukaryotic cells, RNA-binding proteins (RBPs) contribute to gene expression by regulating the form, abundance, and stability of both coding and non-coding RNA. In the vertebrate brain, RBPs account for many distinctive features of RNA processing such as activity-dependent transcript localization and localized protein synthesis. Several RBPs with activities that are important for the proper function of adult brain have been identified, but how many RBPs exist and where these genes are expressed in the developing brain is uncharacterized. RESULTS: Here we describe a comprehensive catalogue of the unique RBPs encoded in the mouse genome and provide an online database of RBP expression in developing brain. We identified 380 putative RBPs in the mouse genome. Using in situ hybridization, we visualized the expression of 323 of these RBP genes in the brains of developing mice at embryonic day 13.5, when critical fate choice decisions are made and at P0, when major structural components of the adult brain are apparent. We demonstrate i) that 16 of the 323 RBPs examined show neural-specific expression at the stages we examined, and ii) that a far larger subset (221) shows regionally restricted expression in the brain. Of the regionally restricted RBPs, we describe one group that is preferentially expressed in the E13.5 ventricular areas and a second group that shows spatially restricted expression in post-mitotic regions of the embryonic brain. Additionally, we find a subset of RBPs that share the same complex pattern of expression, in proliferating regions of the embryonic and postnatal NS and peripheral tissues. CONCLUSION: Our data show that, in contrast to their proposed ubiquitous involvement in gene regulation, most RBPs are not uniformly expressed. Here we demonstrate the region-specific expression of RBPs in proliferating vs. post-mitotic brain regions as well as cell-type-specific RBP expression. We identify uncharacterized RBPs that exhibit neural-specific expression as well as novel RBPs that show expression in non-neural tissues. The data presented here and in an online database provide a visual filter for the functional analysis of individual RBPs.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Genoma , Ratones Endogámicos C57BL/genética , Proteínas de Unión al ARN/genética , Animales , Encéfalo/metabolismo , Proliferación Celular , Bases de Datos de Ácidos Nucleicos , Embrión de Mamíferos , Hibridación in Situ , Ratones , Distribución Tisular
7.
Dev Cell ; 6(6): 740-2, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15177019

RESUMEN

The C. elegans sex-determining gene tra-2 is subject to multiple forms of regulation. A report in the June 4 issue of Molecular Cell now shows that proteins associated with the tra-2 mRNA determine its pathway of nuclear export and influence its cytoplasmic fate. These findings demonstrate an additional level of control and link nuclear export to the regulation of sexual development.


Asunto(s)
Transporte Activo de Núcleo Celular/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de la Membrana/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Procesos de Determinación del Sexo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Diferenciación Sexual/genética
8.
Nature ; 425(6959): 727-33, 2003 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-14562105

RESUMEN

Insulin stimulates glucose uptake in fat and muscle by mobilizing the GLUT4 glucose transporter. GLUT4 is sequestered intracellularly in the absence of insulin, and is redistributed to the plasma membrane within minutes of insulin stimulation. But the trafficking mechanisms that control GLUT4 sequestration have remained elusive. Here we describe a functional screen to identify proteins that modulate GLUT4 distribution, and identify TUG as a putative tether, containing a UBX domain, for GLUT4. In truncated form, TUG acts in a dominant-negative manner to inhibit insulin-stimulated GLUT4 redistribution in Chinese hamster ovary cells and 3T3-L1 adipocytes. Full-length TUG forms a complex specifically with GLUT4; in 3T3-L1 adipocytes, this complex is present in unstimulated cells and is largely disassembled by insulin. Endogenous TUG is localized with the insulin-mobilizable pool of GLUT4 in unstimulated 3T3-L1 adipocytes, and is not mobilized to the plasma membrane by insulin. Distinct regions of TUG are required to bind GLUT4 and to retain GLUT4 intracellularly in transfected, non-adipose cells. Our data suggest that TUG traps endocytosed GLUT4 and tethers it intracellularly, and that insulin mobilizes this pool of retained GLUT4 by releasing this tether.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas Musculares , Células 3T3 , Adipocitos/citología , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Células CHO , Proteínas Portadoras/química , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Clonación Molecular , Cricetinae , Desoxiglucosa/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Transportador de Glucosa de Tipo 4 , Humanos , Insulina/farmacología , Péptidos y Proteínas de Señalización Intracelular , Ratones , Proteínas de Transporte de Monosacáridos/genética , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Transporte de Proteínas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA