Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 22
1.
Sci Total Environ ; 917: 170167, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38242480

Coastal species are threatened by fishing practices and changing environmental conditions, such as marine heatwaves (MHW). The mechanisms that confer tolerance to such stressors in marine invertebrates are poorly understood. However, differences in tolerance among different species may be attributed to their geographical distribution. To test the tolerance of species occupying different thermal ranges, we used two closely related bivalves the softshell clam Mya arenaria (Linnaeus, 1758), a cold-temperate invader with demonstrated potential for establishment in the Arctic, and the blunt gaper Mya truncata (Linnaeus, 1758), a native polar species. Clams were subjected to a thermal stress, mimicking a MHW, and harvesting stress in a controlled environment. Seven acute temperature changes (2, 7, 12, 17, 22, 27, and 32 °C) were tested at two harvesting disturbance intensities (with, without). Survival was measured after 12 days and three tissues (gills, mantle, and posterior adductor muscle) collected from surviving individuals for targeted metabolomic profiling. MHW tolerance differed significantly between species: 26.9 °C for M. arenaria and 17.8 °C for M. truncata, with a negligeable effect of harvesting. At the upper thermal limit, M. arenaria displayed a more profound metabolomic remodelling when compared to M. truncata, and this varied greatly between tissue types. Network analysis revealed differences in pathway utilization at the upper MHW limit, with M. arenaria displaying a greater reliance on multiple DNA repair and expression and cell signalling pathways, while M. truncata was limited to fewer pathways. This suggests that M. truncata is ill equipped to cope with warming environments. MHW patterning in the Northwest Atlantic may be a strong predictor of population survival and future range shifts in these two clam species. As polar environments undergo faster rates of warming compared to the global average, M. truncata may be outcompeted by M. arenaria expanding into its native range.


Mya , Humans , Animals , Mya/genetics , Cold Temperature , Aquatic Organisms , Arctic Regions , Ecosystem
2.
Mar Pollut Bull ; 194(Pt B): 115318, 2023 Sep.
Article En | MEDLINE | ID: mdl-37542925

Multifactorial studies assessing the cumulative effects of natural and anthropogenic stressors on individual stress response are crucial to understand how organisms and populations cope with environmental change. We tested direct and indirect causal pathways through which environmental stressors affect the stress response of wild gilthead seabream in Mediterranean costal lagoons using an integrative PLS-PM approach. We integrated information on 10 environmental variables and 36 physiological variables into seven latent variables reflecting lagoons features and fish health. These variables concerned fish lipid reserves, somatic structure, inorganic contaminant loads, and individual trophic and stress response levels. This modelling approach allowed explaining 30 % of the variance within these 46 variables considered. More importantly, 54 % of fish stress response was explained by the dependent lagoon features, fish age, fish diet, fish reserve, fish structure and fish contaminant load latent variables included in our model. This integrative study sheds light on how individuals deal with contrasting environments and multiple ecological pressures.


Sea Bream , Animals , Nutritional Status , Diet , Ecosystem
3.
Glob Chang Biol ; 28(11): 3711-3727, 2022 06.
Article En | MEDLINE | ID: mdl-35212084

The Arctic is among the fastest-warming areas of the globe. Understanding the impact of climate change on foundational Arctic marine species is needed to provide insight on ecological resilience at high latitudes. Marine forests, the underwater seascapes formed by seaweeds, are predicted to expand their ranges further north in the Arctic in a warmer climate. Here, we investigated whether northern habitat gains will compensate for losses at the southern range edge by modelling marine forest distributions according to three distribution categories: cryophilic (species restricted to the Arctic environment), cryotolerant (species with broad environmental preferences inclusive but not limited to the Arctic environment), and cryophobic (species restricted to temperate conditions) marine forests. Using stacked MaxEnt models, we predicted the current extent of suitable habitat for contemporary and future marine forests under Representative Concentration Pathway Scenarios of increasing emissions (2.6, 4.5, 6.0, and 8.5). Our analyses indicate that cryophilic marine forests are already ubiquitous in the north, and thus cannot expand their range under climate change, resulting in an overall loss of habitat due to severe southern range contractions. The extent of marine forests within the Arctic basin, however, is predicted to remain largely stable under climate change with notable exceptions in some areas, particularly in the Canadian Archipelago. Succession may occur where cryophilic and cryotolerant species are extirpated at their southern range edge, resulting in ecosystem shifts towards temperate regimes at mid to high latitudes, though many aspects of these shifts, such as total biomass and depth range, remain to be field validated. Our results provide the first global synthesis of predicted changes to pan-Arctic coastal marine forest ecosystems under climate change and suggest ecosystem transitions are unavoidable now for some areas.


Climate Change , Ecosystem , Arctic Regions , Canada , Forests
4.
Environ Toxicol Chem ; 40(12): 3434-3440, 2021 12.
Article En | MEDLINE | ID: mdl-34606656

Pressures from anthropogenic activities are causing degradation of estuarine and coastal ecosystems around the world. Trace metals are key pollutants that are released and can partition in a range of environmental compartments, to be ultimately accumulated in exposed biota. The level of pressure varies with locations and the range and intensity of anthropogenic activities. The present study measured residues of trace metals in Mytilus mussel species collected from a range of locations around the world in areas experiencing a gradient of anthropogenic pressures that we classified as low, moderate, or high impact. The data showed no grouping/impact level when sampling sites in all countries were incorporated in the analysis, but there was significant clustering/impact level for most countries. Overall, high-impact areas were characterized by elevated concentrations of zinc, lead, nickel, and arsenic, whereas copper and silver were detected at higher concentrations in medium-impact areas. Finally, whereas most metals were found at lower concentrations in areas classified as low impact, cadmium was typically elevated in these areas. The present study provides a unique snapshot of worldwide levels of coastal metal contamination through the use of Mytilus species, a well-established marine biomonitoring tool. Environ Toxicol Chem 2021;40:3434-3440. © 2021 SETAC.


Metals, Heavy , Mytilus , Trace Elements , Water Pollutants, Chemical , Animals , Ecosystem , Environmental Monitoring , Metals, Heavy/analysis , Mytilus/metabolism , Trace Elements/analysis , Water Pollutants, Chemical/analysis
5.
Sci Rep ; 11(1): 4194, 2021 02 18.
Article En | MEDLINE | ID: mdl-33603048

The increasing number and diversity of anthropogenic stressors in marine habitats have multiple negative impacts on biological systems, biodiversity and ecosystem functions. Methods to assess cumulative effects include experimental manipulations, which may identify non-linear responses (i.e. synergies, antagonisms). However, experiments designed to test these ideas are uncommon, generally focusing on single biological responses. We conducted a manipulative experiment to investigate the isolated and combined effects of warming (+ 6 °C), salinity variation (freshwater pulses or presses), and nutrient enrichment (natural or enriched) following one and three month's exposure, on responses measured at multiple levels of biological complexity in a simple bivalve assemblage. More specifically, we determined effects on bivalve mortality, growth, shell mineralization, and energy content, as well as microphytobenthos biomass. Salinity variation and nutrient enrichment, individually and combined, caused strong impacts on some of the measured variables and their effect varied through time. In contrast, warming had no effect. Our work highlights the prevalence of antagonistic interactions, the importance of examining effects of single and multiple stressors through time, and of considering multiple responses to understand the complexity behind stressor interactions.


Biodiversity , Ecosystem , Animals , Biomass , Bivalvia/physiology , Environment , Marine Biology/methods , Nutrients/administration & dosage , Salinity
6.
Glob Chang Biol ; 26(9): 4752-4771, 2020 Sep.
Article En | MEDLINE | ID: mdl-32407554

The risk of aquatic invasions in the Arctic is expected to increase with climate warming, greater shipping activity and resource exploitation in the region. Planktonic and benthic marine aquatic invasive species (AIS) with the greatest potential for invasion and impact in the Canadian Arctic were identified and the 23 riskiest species were modelled to predict their potential spatial distributions at pan-Arctic and global scales. Modelling was conducted under present environmental conditions and two intermediate future (2050 and 2100) global warming scenarios. Invasion hotspots-regions of the Arctic where habitat is predicted to be suitable for a high number of potential AIS-were located in Hudson Bay, Northern Grand Banks/Labrador, Chukchi/Eastern Bering seas and Barents/White seas, suggesting that these regions could be more vulnerable to invasions. Globally, both benthic and planktonic organisms showed a future poleward shift in suitable habitat. At a pan-Arctic scale, all organisms showed suitable habitat gains under future conditions. However, at the global scale, habitat loss was predicted in more tropical regions for some taxa, particularly most planktonic species. Results from the present study can help prioritize management efforts in the face of climate change in the Arctic marine ecosystem. Moreover, this particular approach provides information to identify present and future high-risk areas for AIS in response to global warming.


Climate Change , Ecosystem , Arctic Regions , Canada , Oceans and Seas
7.
Sci Total Environ ; 711: 134863, 2020 Apr 01.
Article En | MEDLINE | ID: mdl-32000329

Rock crab Cancer irroratus and American lobster Homarus americanus are important commercial species in coastal areas where intensive salmon aquaculture occurs in eastern Canada. Such aquaculture releases organic wastes, especially feed waste (i.e. food pellets made in part from terrestrial feed ingredients). Terrestrial compounds from feed wastes were used to trace their consumption by the two decapods in the Bay of Fundy, Canada. Both species were collected in farms and reference sites and their fatty acid profiles evaluated. Individuals in close proximity to salmon farms were found to consume waste feed (high proportions of 18:1n-9 and 18:2n-6 and low proportions of 20:5n-3 and 22:6n-3). This consumption is associated with a reduction in diet diversity and a trend of increased lipid content in rock crab, suggesting that this species is more receptive to the waste feed than the American lobster, which did not show evidence of diet diversity loss and of increased lipid content. Fatty acid profiles from rock crab ovaries were also affected by the diet shift toward waste feed (low proportion of long-chain essential fatty acids), suggesting a potential influence on crab reproductive success. However, this remains to be assessed. Resulting effects of diet shifts on the ecosystem (e.g. reduction in the consumption of primary consumers and change of fatty acids transferred to predatory fish or gulls through decapods) should be evaluated to assess the spatial and temporal scales of the salmon aquaculture footprint. If the assessment reveals a strong footprint, measures to reduce wastes could be considered (e.g. pellets with greater buoyancy or with different recipe).


Decapoda , Salmon , Animal Feed , Animals , Aquaculture , Canada , Ecosystem
8.
J Invertebr Pathol ; 169: 107311, 2020 01.
Article En | MEDLINE | ID: mdl-31857125

An L-shaped shell deformity (LSSD) on the posterior shell edge is known exclusively in wild mytilid mussels infected with photosynthetic Coccomyxa-like algae. LSSD forms due to the appearance of extra shell material; it only occurs if the mussel is heavily infected with the alga. Traditionally, observation of high amount of the green spots (algal colonies) on a large area of host soft tissues (most of the mantle and in adductor muscle) has been used to indicate a high infection rate. We examined 300 Mytilus spp. (100 small, 20-30 mm; 200 large, 40-60 mm) with a high degree of LSSD (parameter "d" > 5 mm) from the Lower St. Lawrence Estuary (Québec, Canada). Green spots were absent in two large mussels, and were only present along the mantle posterior edge in 14 large mussels; other individuals had high infection levels. Our observations suggest that some individuals could be in a state of remission, or, even more optimistically - mussels may be able to resist the pathogen. LSSD is the stable through-time marker for detection of mytilid mussels that are or were infected with Coccomyxa algae, and, thus, may provide information for the study of mussel immunity and control of alga distribution/migration in coastal waters worldwide.


Animal Shells/anatomy & histology , Chlorophyta/physiology , Host-Pathogen Interactions , Mytilus/anatomy & histology , Animals , Estuaries , Quebec , Retrospective Studies
9.
Sci Total Environ ; 692: 39-48, 2019 Nov 20.
Article En | MEDLINE | ID: mdl-31336300

Although many studies have described the influence of bivalve aquaculture on the benthic environment, effects on benthic functional diversity are poorly known, as are links with ecosystem processes. We investigated the response of a benthic ecosystem in terms of taxonomic and functional diversity (infauna >500 µm), biogeochemical indicators (organic matter content, redox potential, sulfides level, bacteria) and metabolism (nutrient fluxes), subjected to various levels of mussel biodeposition as a general model of organic enrichment. Results show that local benthic conditions may recover fairly quickly depending on environmental conditions whereas modifications of the benthic community structure persist over a longer time scale with an impact on benthic ecosystem functioning. Fauna-mediated oxidation of the sediment likely increased nitrogen recycling through nitrification whereas binding and release of phosphorus to the water column seems to be driven by more complex processes. Results highlight the importance of species identity (ecological traits) on biogeochemical cycling and solute exchange across the sediment-water interface, with implications for the ecological functioning of exploited areas.


Biota , Geologic Sediments/chemistry , Mytilus edulis/physiology , Nutrients/analysis , Animals , Aquaculture , Aquatic Organisms/physiology , Quebec
10.
Mar Environ Res ; 149: 126-136, 2019 Aug.
Article En | MEDLINE | ID: mdl-31221492

Anthropogenic subsidies to natural systems can influence the diet of mobile omnivore species and co-occurring species. This study assessed if fall-off from mussel aquaculture subsidized wild populations of mobile scavengers and predators, such as the commercially important lobster Homarus americanus. A Bayesian stable isotope-mixing model with parameters determined from the literature and from a 105 days laboratory feeding experiment was applied to wild lobsters to determine how important the various food sources were in these lobsters, especially mussel fall-off. Isotopic values were mainly affected by lobster size with model outputs indicating that large lobsters (>80 mm cephalothorax) fed mainly on mussels from the mussel farm (46% of the diet) while small ones fed mostly on the rock crab Cancer irroratus (99%). The contribution of mussel subsidies to the lobster's diet was thus size-specific and direct (i.e. through mussel fall-off and not through co-occurring species such as rock crab). The absence of a link between food sources and lipid energy content in lobsters suggested that the reduction of rock crab consumption would have to be more drastic to affect the general health of large lobsters in the short term.


Aquaculture , Bivalvia , Diet , Food Chain , Nephropidae/physiology , Animals , Brachyura , Ecological Parameter Monitoring , Glycogen/analysis , Isotope Labeling , Lipids/analysis , Models, Theoretical , Nutritive Value , Proteins/analysis , Seafood
11.
Mar Environ Res ; 136: 62-70, 2018 May.
Article En | MEDLINE | ID: mdl-29503107

Given concerns of increasing rates of species extinctions, the relationship between biodiversity and ecosystem functioning has become a major research focus over the past two decades. Many studies have shown that biodiversity per se (e.g. species richness) or species-specific traits may be good predictors of changes in ecosystem function. Although numerous studies on this subject have focused on terrestrial systems, few have evaluated benthic marine systems. We used the Limecola balthica community as a model to test whether the number or identity of three well-studied macrofaunal species influence the sediment bacterial compartment, which drives important biogeochemical processes and influence ecosystem functioning. We also investigated the poorly known role of meiofauna in the interactions between macrofauna and bacteria. Eight combinations of 0-3 species were maintained in microcosms for 34 days in the presence or absence of meiofauna. The abundance and composition of the bacterial community, defined by the relative percentage of cells with a high (HNA) vs low (LNA) nucleic acid content, were measured. Species identity of macrofauna was a better indicator of changes in the microbial compartment than was species richness per se. In particular, the gallery-diffuser behaviour of the polychaete Alitta virens likely induced strong changes in sediment physical and geochemical properties with a major impact on the bacterial compartment. Moreover, the presence of meiofauna modulated the influence of macrofauna on bacterial communities. This study provides evidence that species identity provides greater explanatory power than species richness to predict changes in the bacterial compartment. We propose that multi-compartment approaches to describe interactions amongst different size classes of organisms and their ecological roles should be further developed to improve our understanding of benthic ecosystem functioning.


Aquatic Organisms/physiology , Bacteria/growth & development , Invertebrates/physiology , Water Microbiology , Animals , Bacteria/classification , Biodiversity , Ecology , Ecosystem , Environmental Monitoring , Geologic Sediments/chemistry
12.
Ecol Evol ; 7(13): 5016-5025, 2017 07.
Article En | MEDLINE | ID: mdl-28690827

Intraguild predation (IGP) is an omnivorous food web configuration in which the top predator consumes both a competitor (consumer) and a second prey that it shares with the competitor. This omnivorous configuration occurs frequently in food webs, but theory suggests that it is unstable unless stabilizing mechanisms exist that can decrease the strength of the omnivore and consumer interaction. Although these mechanisms have been documented in native food webs, little is known about whether they operate in the context of an introduced species. Here, we study a marine mussel aquaculture system where the introduction of omnivorous mussels should generate an unstable food web that favors the extinction of the consumer, yet it persists. Using field and laboratory approaches, we searched for stabilizing mechanisms that could reduce interaction strengths in the food web. While field zooplankton counts suggested that mussels influence the composition and abundance of copepods, stable isotope results indicated that life-history omnivory and cannibalism facilitated the availability of prey refugia, and reduced competition and the interaction strength between the mussel omnivore and zooplankton consumers. In laboratory experiments, however, we found no evidence of adaptive feeding which could weaken predator-consumer interactions. Our food web study suggests that the impact of an introduced omnivore may not only depend on its interaction with native species but also on the availability of stabilizing mechanisms that alter the strength of those interactions.

13.
PLoS One ; 11(6): e0156411, 2016.
Article En | MEDLINE | ID: mdl-27249793

Mussel aquaculture has expanded worldwide and it is important to assess its impact on the water column and the planktonic food web to determine the sustainability of farming practices. Mussel farming may affect the planktonic food web indirectly by excreting bioavailable nutrients in the water column (a short-term effect) or by increasing nutrient effluxes from biodeposit-enriched sediments (a long-term effect). We tested both of these indirect effects in a lagoon by using plankton-enclosing benthocosms that were placed on the bottom of a shallow lagoon either inside of a mussel farm or at reference sites with no history of aquaculture. At each site, half of the benthocosms were enriched with seawater that had held mussels (excretion treatment), the other half received non-enriched seawater as a control treatment. We monitored nutrients ([PO43-] and [NH4+]), dissolved oxygen and plankton components (bacteria, the phytoplankton and the zooplankton) over 5 days. We found a significant relationship between long-term accumulation of mussel biodeposits in sediments, water-column nutrient concentrations and plankton growth. Effects of mussel excretion were not detected, too weak to be significant given the spatial and temporal variability observed in the lagoon. Effects of mussels on the water column are thus likely to be coupled to benthic processes in such semi-enclosed water bodies.


Aquaculture , Bivalvia/physiology , Plankton/physiology , Animals , Food Chain
14.
Mar Biol ; 163: 61, 2016.
Article En | MEDLINE | ID: mdl-27064481

Knowledge of the potential distribution (i.e. abundance and spatial extent) of an invasive species is important to estimating its potential impacts on recipient communities. Most previous studies have focused on the potential spatial extent of invasive species populations at regional scales, but little is known on how species successfully recruit and establish at more local scales. In this study, we examined how recruitment of the green alga Codium fragile ssp. fragile (hereafter Codium) can vary spatially and the environmental factors associated with Codium establishment in eelgrass (Zostera marina) beds. Standardized recruitment blocks (65 blocks in a 720 × 240 m2 grid) were used to monitor the number of Codium recruits, juveniles and adults over 2 years. Environmental factors (depth, relative water flow, light and temperature) and attributes of the surrounding macrophyte assemblage (eelgrass density, eelgrass length, Codium biomass) were also measured. Recruitment occurred on all blocks or nearby artificial structures (i.e. buoys) and mainly originated from button stages (i.e. female gametes or utricles). Contrary to other studies, the abundance of Codium (recruits, juveniles and adults) was best predicted by the density of the native canopy-forming species, Z. marina, which highlights a positive interaction between native and non-native canopy-forming species. Seasonal variation in recruitment was observed; it was lower during the summer. Recruitment did not show any distinct spatial pattern (e.g. gradient or patch), but the same spatial pattern of recruitment was observed every sampling date, suggesting that there are "hotspots" for recruitment. In general, the total number of Codium fronds observed on a block at the end of the experiment was positively correlated with the cumulative number of recruits. However, recruitment occurred on some blocks but recruits never grew, suggesting that some environmental factors limit Codium distribution and abundance in eelgrass beds. Overall, the assessment of Codium recruitment over 2 years showed that the colonization of suitable locations by Codium within seagrass beds may take several years and that some factors may not only limit, but also inhibit Codium expansion within eelgrass beds.

15.
Mar Environ Res ; 117: 1-12, 2016 Jun.
Article En | MEDLINE | ID: mdl-27039134

In coastal environments, fishing and aquaculture may be important sources of disturbance to ecosystem functioning, the quantification of which must be assessed to make them more sustainable. In the Chausey Archipelago, France, recreational fishing and commercial shellfish farming are the only two evident anthropogenic activities, dominated by bivalve hand-raking and 'bouchot' mussel culture, respectively. This study evaluates the impact of both activities on bivalve recruitment dynamics by comparing primary recruitment intensity (short-term effect) and recruitment efficiency (medium-term effect) by sampling bivalves in reference (undisturbed) and disturbed (i.e. subjected to hand-raking or in 'bouchot' mussel culture areas) parcels throughout and at the end of the recruitment season, respectively. Specific hypotheses evaluated were that (H1) bivalve hand-raking negatively affects bivalve recruitment and that (H2) 'bouchot' mussel culture promotes bivalve recruitment. Patterns in bivalve community structure in reference parcels (i.e. natural pattern) differed between initial and final recruitment, underlining the great importance of early post-settlement processes, particularly secondary dispersal. Primary recruitment intensity was inhibited in hand-raking parcels whereas it was promoted in 'bouchot' mussel culture parcels, but the effect on recruitment efficiency was muted for both activities due to post-settlement processes. Nevertheless, the importance of effects that occur during the first step of recruitment should not be ignored as they may affect bivalve communities and induce immediate consequences on the trophic web through a cascade effect. Finally, it is highlighted that hand-raking damages all life stages of the common cockle Cerastoderma edule, one of the major target species, suggesting that this activity should be managed with greater caution than is currently done.


Bivalvia , Fisheries/statistics & numerical data , Animals , Aquaculture/methods , Ecosystem , Environmental Monitoring , France
16.
PLoS One ; 10(4): e0123681, 2015.
Article En | MEDLINE | ID: mdl-25923715

This experimental microcosm study reports the influence of organic enrichments by mussel biodeposits on the metabolic activity and functional diversity of benthic prokaryotic communities. The different biodeposit enrichment regimes created, which mimicked the quantity of faeces and pseudo-faeces potentially deposited below mussel farms, show a clear stimulatory effect of this organic enrichment on prokaryotic metabolic activity. This effect was detected once a certain level of biodeposition was attained with a tipping point estimated between 3.25 and 10 g day-1 m-2. Prokaryotic communities recovered their initial metabolic activity by 11 days after the cessation of biodeposit additions. However, their functional diversity remained greater than prior to the disturbance suggesting that mussel biodeposit enrichment may disturb the functioning and perhaps the role of prokaryotic communities in benthic ecosystems. This manipulative approach provided new information on the influence of mussel biodeposition on benthic prokaryotic communities and dose-response relationships and may support the development of carrying capacity models for bivalve culture.


Bivalvia/growth & development , Geologic Sediments/microbiology , Prokaryotic Cells/metabolism , Animals , Aquaculture , Biodiversity , Bivalvia/physiology , Ecosystem , Feces/microbiology , Hydrogen-Ion Concentration , Oxygen/metabolism , Prokaryotic Cells/cytology , Temperature
17.
Mar Pollut Bull ; 66(1-2): 92-104, 2013 Jan 15.
Article En | MEDLINE | ID: mdl-23219398

This study reports the results of a field experiment using benthic mesocosms that examined dose-dependent effects of mussel biodeposition on the benthic environment. Mesocosms were placed in the natural sea bottom and subjected to one of eight levels of biodeposition (from 0 to 1400 mussels m⁻²). Most analyses indicated non-linear (i.e., threshold) effects. Sediment characteristics changed significantly between 200 and 400 mussels m⁻² as did multivariate community structure. Community structure effects were characterised by changes in abundances of species that are very sensitive or tolerant to organic loading. The multivariate AZTI Marine Biotic Index (M-AMBI) indicated that the benthic status changed from High to Good in all mesocosms receiving biodeposits. Sediments acted as a sink for oxygen (O2), but results suggest O2 sediment demand was not sensitive enough to evaluate organic loading impacts. Results from this and improved experiments can be used to determine the environmental carrying capacity of sites for bivalve culture.


Aquaculture , Environmental Monitoring , Geologic Sediments/chemistry , Mytilus edulis/physiology , Water Pollutants/analysis , Animals , Oxygen/analysis , Seawater/chemistry , Water Pollution/statistics & numerical data
18.
Mol Ecol ; 21(17): 4227-41, 2012 Sep.
Article En | MEDLINE | ID: mdl-22804778

The relative importance of multiple vectors to the initial establishment, spread and population dynamics of invasive species remains poorly understood. This study used molecular methods to clarify the roles of commercial shipping and recreational boating in the invasion by the cosmopolitan tunicate, Botryllus schlosseri. We evaluated (i) single vs. multiple introduction scenarios, (ii) the relative importance of shipping and boating to primary introductions, (iii) the interaction between these vectors for spread (i.e. the presence of a shipping-boating network) and (iv) the role of boating in determining population similarity. Tunicates were sampled from 26 populations along the Nova Scotia, Canada, coast that were exposed to either shipping (i.e. ports) or boating (i.e. marinas) activities. A total of 874 individuals (c. 30 per population) from five ports and 21 marinas was collected and analysed using both mitochondrial cytochrome c oxidase subunit I gene (COI) and 10 nuclear microsatellite markers. The geographical location of multiple hotspot populations indicates that multiple invasions have occurred in Nova Scotia. A loss of genetic diversity from port to marina populations suggests a stronger influence of ships than recreational boats on primary coastal introductions. Population genetic similarity analysis reveals a dependence of marina populations on those that had been previously established in ports. Empirical data on marina connectivity because of boating better explains patterns in population similarities than does natural spread. We conclude that frequent primary introductions arise by ships and that secondary spread occurs gradually thereafter around individual ports, facilitated by recreational boating.


Genetics, Population , Introduced Species , Ships , Urochordata/genetics , Animals , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Genetic Variation , Microsatellite Repeats , Molecular Sequence Data , Nova Scotia , Phylogeography , Population Dynamics , Recreation , Sequence Analysis, DNA , Transportation
19.
Proc Biol Sci ; 279(1740): 2990-7, 2012 Aug 07.
Article En | MEDLINE | ID: mdl-22456877

Increasing empirical evidence indicates the number of released individuals (i.e. propagule pressure) and number of released species (i.e. colonization pressure) are key determinants of the number of species that successfully invade new habitats. In view of these relationships, and the possibility that ships transport whole communities of organisms, we collected 333 ballast water and sediment samples to investigate the relationship between propagule and colonization pressure for a variety of diverse taxonomic groups (diatoms, dinoflagellates and invertebrates). We also reviewed the scientific literature to compare the number of species transported by ships to those reported in nature. Here, we show that even though ships transport nearly entire local communities, a strong relationship between propagule and colonization pressure exists only for dinoflagellates. Our study provides evidence that colonization pressure of invertebrates and diatoms may fluctuate widely irrespective of propagule pressure. We suggest that the lack of correspondence is explained by reduced uptake of invertebrates into the transport vector and the sensitivity of invertebrates and diatoms to selective pressures during transportation. Selection during transportation is initially evident through decreases in propagule pressure, followed by decreased colonization pressure in the most sensitive taxa.


Diatoms/physiology , Dinoflagellida/physiology , Ecosystem , Invertebrates/physiology , Seawater , Ships , Animals , Biofouling , Diatoms/classification , Dinoflagellida/classification , Geologic Sediments/microbiology , Geologic Sediments/parasitology , Introduced Species , Invertebrates/classification , Seawater/microbiology , Seawater/parasitology
20.
Oecologia ; 168(2): 491-502, 2012 Feb.
Article En | MEDLINE | ID: mdl-21809119

Biological invasions can vary in the extent of their effects on indigenous communities but predicting impacts for particular systems remains difficult. In coastal marine ecosystems, the green seaweed Codium fragile ssp. fragile is a notorious invader with its reputation based on studies conducted largely on rocky shores. The green seaweed has recently invaded soft-bottom eelgrass communities by attaching epiphytically to eelgrass (Zostera marina) rhizomes, thereby creating the potential for disruption of these coastal habitats through competition or disturbance. We investigated the effect of this invader on various aspects of eelgrass performance (shoot density and length, shoot growth, above- and below-ground biomass, carbohydrate storage) using both small-scale manipulative and large-scale observational experiments. Manipulative experiments that varied Codium abundance demonstrated clear negative effects over a 4-month period on shoot density and carbohydrate reserves, but only for high, but realistic, Codium biomass levels. Light levels were much lower under canopies for high and medium density Codium treatments relative to low and control Codium cover treatments, suggesting that shading may influence eelgrass growing under the algal cover. In contrast, these effects were either not detectable or very weak when examined correlatively with field surveys conducted at larger spatial scales, even for sites that had been invaded for over 4 years. It is premature to extend generalizations of Codium's impact derived from studies in other systems to eelgrass communities; further efforts are required to assess the long-term threats that the alga poses to this ecosystem. This study demonstrates the need to investigate impacts of invasions over multiple scales, especially those that incorporate the temporal and spatial heterogeneity of the invader's abundance.


Chlorophyta/physiology , Ecosystem , Zosteraceae/physiology , Introduced Species , Population Dynamics
...