Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 48(D1): D704-D715, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31701156

RESUMEN

In biology and biomedicine, relating phenotypic outcomes with genetic variation and environmental factors remains a challenge: patient phenotypes may not match known diseases, candidate variants may be in genes that haven't been characterized, research organisms may not recapitulate human or veterinary diseases, environmental factors affecting disease outcomes are unknown or undocumented, and many resources must be queried to find potentially significant phenotypic associations. The Monarch Initiative (https://monarchinitiative.org) integrates information on genes, variants, genotypes, phenotypes and diseases in a variety of species, and allows powerful ontology-based search. We develop many widely adopted ontologies that together enable sophisticated computational analysis, mechanistic discovery and diagnostics of Mendelian diseases. Our algorithms and tools are widely used to identify animal models of human disease through phenotypic similarity, for differential diagnostics and to facilitate translational research. Launched in 2015, Monarch has grown with regards to data (new organisms, more sources, better modeling); new API and standards; ontologies (new Mondo unified disease ontology, improvements to ontologies such as HPO and uPheno); user interface (a redesigned website); and community development. Monarch data, algorithms and tools are being used and extended by resources such as GA4GH and NCATS Translator, among others, to aid mechanistic discovery and diagnostics.


Asunto(s)
Biología Computacional/métodos , Genotipo , Fenotipo , Algoritmos , Animales , Ontologías Biológicas , Bases de Datos Genéticas , Exoma , Estudios de Asociación Genética , Variación Genética , Genómica , Humanos , Internet , Programas Informáticos , Investigación Biomédica Traslacional , Interfaz Usuario-Computador
2.
Curr Protoc Hum Genet ; 103(1): e92, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31479590

RESUMEN

The Human Phenotype Ontology (HPO) is a standardized set of phenotypic terms that are organized in a hierarchical fashion. It is a widely used resource for capturing human disease phenotypes for computational analysis to support differential diagnostics. The HPO is frequently used to create a set of terms that accurately describe the observed clinical abnormalities of an individual being evaluated for suspected rare genetic disease. This profile is compared with computational disease profiles in the HPO database with the aim of identifying genetic diseases with comparable phenotypic profiles. The computational analysis can be coupled with the analysis of whole-exome or whole-genome sequencing data through applications such as Exomiser. This article explains how to choose an optimal set of HPO terms for these cases and enter them with software, such as PhenoTips and PatientArchive, and demonstrates how to use Phenomizer and Exomiser to generate a computational differential diagnosis. © 2019 by John Wiley & Sons, Inc.


Asunto(s)
Ontologías Biológicas , Biología Computacional , Bases de Datos Genéticas , Enfermedades Genéticas Congénitas/diagnóstico , Programas Informáticos , Diagnóstico Diferencial , Exoma/genética , Enfermedades Genéticas Congénitas/genética , Humanos , Fenotipo , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA